Skip to main content
Log in

Preparation and parametric analysis of film/substrate band-gap systems based on elastic instability

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Film/substrate systems with periodic surface morphology generated by elastic instability can have important applications in elastic wave control, as proved by previous finite element analysis. However, experimental verification remains a challenge because of the limited magnitude and adjustment of patterns wavelength, the interface debonding and the structure warpage. A novel experimental method in which film and substrate are selected homologues, and two-phase moisture curing process is adopted to control the physical state of the substrate, the surface pattern and the residual mismatch stress was firstly proposed to prepare the bilayer structures without the detachment and the warpage. Vibration test showed that propagation of the elastic waves could be suppressed in the fabricated bilayer system. Through modelling the formation of surface patterns and the propagation of elastic waves, finite element simulation and dimensional analysis were carried out to examine the band-gap performance of various bilayer structures. Numerical results show that the wavelength of surface patterns which depends on four processing parameters, i.e., the instability load, the film thickness and the elastic moduli of the film and the substrate after the first curing, is crucial to the band-gap properties of film/substrate systems. An analytical expression is given to approximately estimate the surface patterns wavelength and a design guide is suggested to manufacture the film/substrate system considering the film limiting conditions in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’comment: Data will be made available on reasonable request.]

References

  1. S. Chen, Y. Fan, Q. Fu, H. Wu, Y. Jin, J. Zheng, F. Zhang, A review of tunable acoustic metamaterials. Appl. Sci. 8, 1480 (2018). https://doi.org/10.3390/app8091480

    Article  Google Scholar 

  2. H. Ge, M. Yang, C. Ma, M.H. Lu, Y.F. Chen, N. Fang, P.J.N.S.R. Sheng, Breaking the barriers: ad-vances in acoustic functional materials. Natl. Sci. Rev. 5, 159–182 (2018). https://doi.org/10.1093/nsr/nwx154

    Article  Google Scholar 

  3. M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022–2025 (1993). https://doi.org/10.1103/PhysRevLett.71.2022

    Article  ADS  Google Scholar 

  4. Z. Xu, J. Tong, F. Wu, Multi-channel unidirectional transmission of phononic crystal heterojunctions. Mod. Phys. Lett. B 32, 1850050 (2018). https://doi.org/10.1142/s0217984918500501

    Article  ADS  Google Scholar 

  5. G.-Y. Li, G. Xu, Y. Zheng, Y. Cao, Non-leaky modes and bandgaps of surface acoustic waves in wrinkled stiff-film/compliant-substrate bilayers. J. Mech. Phys. Solids 112, 239–252 (2018). https://doi.org/10.1016/j.jmps.2017.11.024

    Article  ADS  Google Scholar 

  6. F. Casadei, L. Dozio, M. Ruzzene, K.A. Cunefare, Periodic shunted arrays for the control of noise radiation in an enclosure. J. Sound Vib. 329, 3632–3646 (2010). https://doi.org/10.1016/j.jsv.2010.04.003

    Article  ADS  Google Scholar 

  7. M. Kafesaki, M. Sigalas, N. García, Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials. Phys. Rev. Lett. 85, 4044–4047 (2000). https://doi.org/10.1103/Phys-RevLett.85.4044

    Article  ADS  Google Scholar 

  8. H.-W. Dong, S.-D. Zhao, Y.-S. Wang, L. Cheng, C. Zhang, Robust 2D/3D multi-polar acoustic metamaterials with broadband double negativity. J. Mech. Phys. Solids 137, 103889 (2020). https://doi.org/10.1016/j.jmps.2020.103889

    Article  MathSciNet  Google Scholar 

  9. Y. Ding, Y. Peng, Y. Zhu, X. Fan, J. Yang, B. Liang, X. Zhu, X. Wan, J. Cheng, Experimental demonstration of acoustic chern insulators. Phys. Rev. Lett. 122, 014302 (2019). https://doi.org/10.1103/PhysRevLett.122.014302

    Article  ADS  Google Scholar 

  10. Z. Wu, W. Liu, F. Li, C. Zhang, Band-gap property of a novel elastic metamaterial beam with x-shaped local resonators. Mech. Syst. Signal Process. 134, 106357 (2019). https://doi.org/10.1016/j.ymssp.2019.106357

    Article  Google Scholar 

  11. C.-M. Chen, S. Yang, Wrinkling instabilities in polymer films and their applications. Polym. Int. 61, 1041–1047 (2012). https://doi.org/10.1002/pi.4223

    Article  Google Scholar 

  12. J. Genzer, J. Groenewold, Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2, 310–323 (2006). https://doi.org/10.1039/b516741h

    Article  ADS  Google Scholar 

  13. S.P. Lacour, S. Wagner, Z. Huang, Z. Suo, Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003). https://doi.org/10.1063/1.1565683

    Article  ADS  Google Scholar 

  14. S.P. Lacour, J. Jones, S. Wagner, L. Teng, S. Zhigang, Stretchable interconnects for elastic electronic surfaces. Proc. IEEE Inst. Electr. Electron. Eng. 93, 1459–1467 (2005). https://doi.org/10.1109/jproc.2005.851502

    Article  Google Scholar 

  15. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293–297 (2005). https://doi.org/10.1038/nmat1342

    Article  ADS  Google Scholar 

  16. A. Bayat, F. Gordaninejad, Switching band-gaps of a phononic crystal slab by surface instability. Smart Mater. Struct. 24, 075009 (2015). https://doi.org/10.1088/0964-1726/24/7/075009

    Article  ADS  Google Scholar 

  17. G.-Y. Li, Y. Zheng, Y.-P. Cao, Tunable defect mode in a soft wrinkled bilayer system. Extreme Mech. Lett. 9, 171–174 (2016). https://doi.org/10.1016/j.eml.2016.06.005

    Article  Google Scholar 

  18. G.-Y. Li, Y. Zheng, Y.-P. Cao, X.Q. Feng, W. Zhang, Controlling elastic wave propagation in a soft bilayer system via wrinkling-induced stress patterns. Soft Matter 12, 4204–4213 (2016). https://doi.org/10.1039/c6sm00265j

    Article  ADS  Google Scholar 

  19. S. Rudykh, M.C. Boyce, Transforming wave propagation in layered media via instability-induced interfacial wrinkling. Phys. Rev. Lett. 112, 034301 (2014). https://doi.org/10.1103/PhysRevLett.112.034301

    Article  ADS  Google Scholar 

  20. G. Gioia, M. Ortiz, Delamination of compressed thin films. Adv. Appl. Mech. 33, 119–192 (1997). https://doi.org/10.1016/S0065-2156(08)70386-7

    Article  MATH  Google Scholar 

  21. J.W. Hutchinson, Z. Suo, Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63–191 (1991). https://doi.org/10.1016/S0065-2156(08)70164-9

    Article  Google Scholar 

  22. S. Chatterjee, C. Mcdonald, J.-N. Niu, S. Velankar, W. Peng, H. Rui, Wrinkling and folding of thin films by viscous stress. Soft Matter 11, 1814–1827 (2015). https://doi.org/10.1039/C4SM02501F

    Article  ADS  Google Scholar 

  23. J. Lin, Q. Guo, S. Dou, N. Hua, C. Zheng, Y. Pan, Y. Huang, Z. Chen, W. Chen, Bistable structures with controllable wrinkled surface. Extreme Mech. Lett. 36, 100653 (2020). https://doi.org/10.1016/j.eml.2020.100653

    Article  Google Scholar 

  24. A. Das, A. Banerji, R. Mukherjee, Programming feature size in the thermal wrinkling of metal polymer bilayer by modulating substrate viscoelasticity. ACS Appl. Mater. Interfaces 9, 23255–23262 (2017). https://doi.org/10.1021/acsami.7b08333

    Article  Google Scholar 

  25. D. Chandra, A.J. Crosby, Self-wrinkling of uv-cured polymer films. Adv. Mater. 23, 3441–3445 (2011). https://doi.org/10.1002/adma.201101366

    Article  Google Scholar 

  26. D. Chua, H. Ng, S. Li, Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane. Appl. Phys. Lett. 76, 721–723 (2000). https://doi.org/10.1063/1.125873

    Article  ADS  Google Scholar 

  27. Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101–2118 (2005). https://doi.org/10.1016/j.jmps.2005.03.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support from the National Natural Science Foundation of China (Grant Nos. 11872324 and 11902229).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Dong Liu, Fei Jia or Bin Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, JM., Zhang, MG., Li, Z. et al. Preparation and parametric analysis of film/substrate band-gap systems based on elastic instability. Eur. Phys. J. Plus 137, 686 (2022). https://doi.org/10.1140/epjp/s13360-022-02908-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02908-z

Navigation