Skip to main content
Log in

Electric current induced by microwave Stark effect of electrons on liquid helium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We propose a frequency-mixed effect of terahertz (THz) and gigahertz (GHz) electromagnetic waves in the cryogenic system of electrons floating on liquid helium surface. The THz wave is near-resonant with the transition frequency between the lowest two levels of surface state electrons. The GHz wave does not excite the transitions but generates a GHz-varying Stark effect with the symmetry-breaking eigenstates of electrons on liquid helium. We show an effective coupling between the inputting THz and GHz waves, which appears at the critical point that the detuning between electrons and THz wave is equal to the frequency of GHz wave. By this coupling, the THz and GHz waves cooperatively excite electrons and generate the low-frequency ac currents along the perpendicular direction of liquid helium surface to be experimentally detected by the image-charge approach (Phys Rev Lett 123:086801, 2019). This offers an alternative approach for THz detections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

The data generated or analyzed during this study are included in this published article.

References

  1. P.M. Platzman, M.I. Dykman, Quantum computing with electrons floating on liquid helium. Science 284, 1967 (1999). https://doi.org/10.1126/science.284.5422.1967

    Article  Google Scholar 

  2. G. Yang, A. Fragner, G. Koolstra, L. Ocola, D.A. Czaplewski, R.J. Schoelkopf, D.I. Schuster, Coupling an ensemble of electrons on superfluid helium to a superconducting circuit. Phys. Rev. X 6, 011031 (2016). https://doi.org/10.1103/PhysRevX.6.011031

    Article  Google Scholar 

  3. E. Collin, W. Bailey, P. Fozooni, P.G. Frayne, P. Glasson, K. Harrabi, M.J. Lea, G. Papageorgiou, Microwave saturation of the Rydberg states of electrons on helium. Phys. Rev. Lett. 89, 245301 (2002). https://doi.org/10.1103/PhysRevLett.89.245301

    Article  ADS  Google Scholar 

  4. M.I. Dykman, P.M. Platzman, P. Seddighrad, Qubits with electrons on liquid helium. Phys. Rev. B 67, 155402 (2003). https://doi.org/10.1103/PhysRevB.67.155402

    Article  ADS  Google Scholar 

  5. F.R. Bradbury, M. Takita, T.M. Gurrieri, K.J. Wilkel, K. Eng, M.S. Carroll, S.A. Lyon, Efficient clocked electron transfer on superfluid helium. Phys. Rev. Lett. 107, 266803 (2011). https://doi.org/10.1103/PhysRevLett.107.266803

    Article  ADS  Google Scholar 

  6. S. Mostame, R. Schützhold, Quantum simulator for the Ising model with electrons floating on a helium film. Phys. Rev. Lett. 101, 220501 (2008). https://doi.org/10.1103/PhysRevLett.101.220501

    Article  ADS  Google Scholar 

  7. D.I. Schuster, A. Fragner, M.I. Dykman, S.A. Lyon, R.J. Schoelkopf, Proposal for manipulating and detecting spin and orbital states of trapped electrons on helium using cavity quantum electrodynamics. Phys. Rev. Lett. 105, 040503 (2010). https://doi.org/10.1103/PhysRevLett.105.040503

    Article  ADS  Google Scholar 

  8. Y. Monarkha, D. Konstantinov, Magneto-oscillations and anomalous current states in a photoexcited electron gas on liquid helium. J. Low Temp. Phys. 197, 208 (2019). https://doi.org/10.1007/s10909-019-02210-w

    Article  ADS  Google Scholar 

  9. A.O. Badrutdinov, D.G. Rees, J.Y. Lin, A.V. Smorodin, D. Konstantinov, Unidirectional charge transport via ripplonic polarons in a three-terminal microchannel device. Phys. Rev. Lett. 124, 126803 (2020). https://doi.org/10.1103/PhysRevLett.124.126803

    Article  ADS  Google Scholar 

  10. S.A. Lyon, Spin-based quantum computing using electrons on liquid helium. Phys. Rev. A 74, 052338 (2006). https://doi.org/10.1103/PhysRevA.74.052338

    Article  ADS  Google Scholar 

  11. M. Zhang, L.F. Wei, Spin-orbit couplings between distant electrons trapped individually on liquid helium. Phys. Rev. B 86, 205408 (2012). https://doi.org/10.1103/PhysRevB.86.205408

    Article  ADS  Google Scholar 

  12. W.T. Sommer, Liquid helium as a barrier to electrons. Phys. Rev. Lett. 12, 271 (1964). https://doi.org/10.1103/PhysRevLett.12.271

    Article  ADS  Google Scholar 

  13. M.W. Cole, Electronic surface states of liquid helium. Rev. Mod. Phys. 46, 451 (1974). https://doi.org/10.1103/RevModPhys.46.451

    Article  ADS  Google Scholar 

  14. C.C. Grimes, T.R. Brown, Direct spectroscopic observation of electrons in image-potential states outside liquid helium. Phys. Rev. Lett. 32, 280 (1974). https://doi.org/10.1103/PhysRevLett.32.280

    Article  ADS  Google Scholar 

  15. C.C. Grimes, T.R. Brown, M.L. Burns, C.L. Zipfel, Spectroscopy of electrons in image-potential-induced surface states outside liquid helium. Phys. Rev. B 13, 140 (1976). https://doi.org/10.1103/PhysRevB.13.140

    Article  ADS  Google Scholar 

  16. E. Kawakami, A. Elarabi, D. Konstantinov, Image-charge detection of the Rydberg states of surface electrons on liquid helium. Phys. Rev. Lett. 123, 086801 (2019). https://doi.org/10.1103/PhysRevLett.123.086801

    Article  ADS  Google Scholar 

  17. A. Elarabi, E. Kawakami, D. Konstantinov, Cryogenic amplification of image-charge detection for readout of quantum states of electrons on liquid helium. J. Low Temp. Phys. 202, 456 (2021). https://doi.org/10.1007/s10909-020-02552-w

    Article  ADS  Google Scholar 

  18. E. Kawakami, A. Elarabi, D. Konstantinov, Relaxation of the excited Rydberg states of surface electrons on liquid helium. Phys. Rev. Lett. 126, 106802 (2021). https://doi.org/10.1103/PhysRevLett.126.106802

    Article  ADS  Google Scholar 

  19. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photon. 1, 97 (2007). https://doi.org/10.1038/nphoton.2007.3

    Article  ADS  Google Scholar 

  20. K. Huang, Z. Wang, Terahertz terabit wireless communication. IEEE Microw. Mag. 12, 108 (2011). https://doi.org/10.1109/MMM.2011.940596

    Article  Google Scholar 

  21. L. Sabbatini, L. Pizzo, G. Dall’Oglio, The brightness temperature of Mercury at 150 and 240 GHz. Eur. Phys. J. Plus. 126, 99 (2011). https://doi.org/10.1140/epjp/i2011-11099-3

    Article  Google Scholar 

  22. J.S. Melinger, Y. Yang, M. Mandehgar, D. Grischkowsky, THz detection of small molecule vapors in the atmospheric transmission windows. Opt. Express 20, 6788 (2012). https://doi.org/10.1364/OE.20.006788

    Article  ADS  Google Scholar 

  23. S. Khushbu, M. Yashini, R. Ashish, C.K. Sunil, Recent advances in Terahertz time-domain spectroscopy and imaging techniques for automation in agriculture and food sector. Food Anal Methods 15, 498 (2022). https://doi.org/10.1007/s12161-021-02132-y

    Article  Google Scholar 

  24. P.H. Siegel, Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 52, 2438 (2004). https://doi.org/10.1109/TMTT.2004.835916

    Article  ADS  Google Scholar 

  25. M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, R. B\(\ddot{\rm {u}}\)ttner, Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett. 80, 154 (2002). https://doi.org/10.1063/1.1428619

  26. M. Jing, Y. Hu, J. Ma, H. Zhang, L.J. Zhang, L.T. Xiao, S.T. Jia, Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy. Nat. Phys. 16, 911 (2020). https://doi.org/10.1038/s41567-020-0918-5

    Article  Google Scholar 

  27. M.M. Nieto, Electrons above a helium surface and the one-dimensional Rydberg atom. Phys. Rev. A 61, 034901 (2000). https://doi.org/10.1103/PhysRevA.61.034901

    Article  ADS  Google Scholar 

  28. M. Zhang, H.Y. Jia, L.F. Wei, Jaynes-Cummings models with trapped electrons on liquid helium. Phys. Rev. A 80, 055801 (2009). https://doi.org/10.1103/PhysRevA.80.055801

    Article  ADS  Google Scholar 

  29. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005). https://doi.org/10.1103/RevModPhys.77.633

    Article  ADS  Google Scholar 

  30. M. Zhang, W.Z. Jia, L.F. Wei, Frequency-doubled scattering of symmetry-breaking surface-state electrons on liquid helium. Physica B Condens. Matter 432, 12 (2014). https://doi.org/10.1016/j.physb.2013.09.026

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, Grants No. 12047576, and No. 11974290.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhang, M. & Wei, L.F. Electric current induced by microwave Stark effect of electrons on liquid helium. Eur. Phys. J. Plus 137, 688 (2022). https://doi.org/10.1140/epjp/s13360-022-02852-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02852-y

Navigation