Skip to main content
Log in

Charged Higgs observability via charged Higgs pair production at future lepton collider

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The observability of charged Higgs bosons \(H^{\pm }\) has been investigated at future lepton collider in type I two-Higgs- doublet model (2HDM) at the center of mass energy \(\sqrt{s}=1.5\) TeV. The signal process chain is \( e^{+}e^{-} \rightarrow Z^{*}/ \gamma ^{*}\rightarrow H^{+} H^{-}\rightarrow H W^{+} H W^{-}\rightarrow b {\overline{b}} j j b {\overline{b}} j j\). The process proceeds through virtual \( \gamma \) and Z boson exchange in the s channel. Several benchmark points are selected, and events are analyzed to reconstruct the mass of charged Higgs bosons \( H^{\pm } \). The value of \(\tan \beta \) is kept relatively high to enhance the branching ratio of \( H\rightarrow b{\overline{b}} \) to benefit the signal processes. The main standard model (SM) background process produced is \( t{\overline{t}} \). Signal selection and significance efficiencies are calculated at integrated luminosities of 100 fb\(^{-1} \) , 500 fb\(^{-1}\), 1000 fb\(^{-1} \), and 5000 fb\(^{-1} \). The reconstructed and corrected mass of charged Higgs bosons \( H^{\pm } \) is determined. Analyzing the results demonstrates that charged Higgs bosons can be discovered through the pair production process via its bosonic decays. This study is supposed to provide the experimentalists with a good way to examine the Higgs bosons beyond SM and to check the validity of 2HDM models in considered parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statements

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. S. Gasiorowicz, Elementary particle physics (1966)

  2. P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964)

    Article  ADS  Google Scholar 

  3. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13(16), 508 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  4. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13(9), 321 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  5. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13(20, 585 (1964)

    Article  Google Scholar 

  6. P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145(4), 1156 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  7. T.W.B. Kibble, Phys. Rev. 155, 1554 (1967)

    Article  ADS  Google Scholar 

  8. J.F. Gunion, H.E. Haber, G.L. Kane, S. Dawson. The Physics of the Higgs Bosons: Higgs Hunter’s Guide (1989)

  9. B. Gustavo Castelo, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher, J.P. Silva, Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 516, 1–102 (2012)

    Article  ADS  Google Scholar 

  10. M.S. Carena, D. Garcia, U. Nierste, C.E.M. Wagner, Nucl. Phys. B 577, 88 (2000). arXiv:hep-ph/9912516

  11. S. Davidson, H.E. Haber, Phys. Rev. D 72, 099902 (2005). arXiv:hep-ph/0504050, Erratum: Phys. Rev. D72 099902 (2005)

    Article  ADS  Google Scholar 

  12. G. Lee, C.E.M. Wagner, Phys. Rev. D 92, 075032 (2015). arXiv:1508.00576

    Article  ADS  Google Scholar 

  13. E. Bagnaschi, F. Brümmer, W. Buchmüller, A. Voigt, G. Weiglein, JHEP 03, 158 (2016). arXiv:1512.07761

    Article  ADS  Google Scholar 

  14. E. Kneringer, Higgs searches at LEP2 with the ALEPH detector, in Electroweak Physics, Proceedings, eds. A. Astbury, B.A. Campel, F.C. Khanna, J. Pinfold, M.G. Vincter (World Scientific, 2000), p. 414–421

  15. ALEPH Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, and LEP Higgs Working Group. Search for charged Higgs bosons: Preliminary combined results using LEP data collected at energies up to 209 GeV. arXiv:hep-ex/0107031 (2001)

  16. A. Heister et al., ALEPH collaboration. Phys. Lett. B 543, 1 (2002)

    Article  ADS  Google Scholar 

  17. J. Abdallah et al., DELPHI collaboration. Eur. Phys. J. C 34, 399 (2004)

    Article  Google Scholar 

  18. P. Abreu et al., DELPHI collaboration. Phys. Lett. B 460, 484 (1999)

    Article  ADS  Google Scholar 

  19. P. Achard et al., L3 Collaboration. Phys. Lett. B 575, 208 (2003)

    Article  ADS  Google Scholar 

  20. G. Abbiendi et al., OPAL collaboration. Eur. Phys. J. C 72, 2076 (2012)

    Article  ADS  Google Scholar 

  21. G. Abbiendi et al., OPAL collaboration. Eur. Phys. J. C 7, 407 (1999)

    Article  ADS  Google Scholar 

  22. O. P. A. L. Collaborations, Search for charged Higgs bosons: combined results using LEP data. arXiv:1301.6065 (2013)

  23. G. Abbiendi et al., ALEPH, DELPHI, L3, OPAL and LEP collaborations. Eur. Phys. J. C 73, 2463 (2013)

    Article  ADS  Google Scholar 

  24. M. Aaboud, G. Aad, B. Abbott, O. Abdinov, B. Abeloos, D.K. Abhayasinghe, S.H. Abidi, et al., Search for charged Higgs bosons decaying via \( H^{\pm }\rightarrow \tau ^{\pm }\nu _ {\tau } \) in the \(\tau \)+ jets and \(\tau \)+ lepton final states with 36 fb \(^{-1} \) of \( pp \) collision data recorded at \(\sqrt{s}= 13\) TeV with the ATLAS experiment. J. High Energy Phys. 9, 139 (2018)

  25. A.M. Sirunyan, P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen, J. Havukainen, J.K. Heikkilä et al., Search for charged Higgs bosons in the \( H^{\pm }\rightarrow \tau ^{\pm }\nu _ {\tau } \) decay channel in proton proton collisions at \(\sqrt{s}= 13\). J. High Energy Phys. 2019(7), 142 (2019)

    Google Scholar 

  26. C. Kingman, A. Jueid, J. Kim, S. Lee, C.-T. Lu, J. Song, Comprehensive study of the light charged Higgs boson in the type-I two-Higgs-doublet model. arXiv:2201.06890 (2022)

  27. Lepton and photon interactions at high energies, in Proceedings, 20th International Symposium, LP 2001, Rome, Italy, July 23–28, arxiv: hep-ex/0107031, http://weblib.cern.ch/abstract?CERN-L3-NOTE-2689 (2001)

  28. T. Aaltonen, et al., (CDF), Phys. Rev. Lett. 103, 101803 arxiv: 0907.1269 (2009)

  29. G. Aad, et al., (ATLAS). JHEP 03, 088. arxiv:1412.6663 (2015)

  30. G. Aad, et al., (ATLAS). JHEP 03, 076. Arxiv: 1212.3572 (2013)

  31. G. Aad, et al. (ATLAS). Eur. Phys. J. C73, 2465. arxiv: 1302.3694 (2013)

  32. G. Aad, et al., (ATLAS). JHEP 06, 039. arxiv: 1204.2760 (2012)

  33. CMS-PAS-HIG-11-008, CMS Collaboration (2011)

  34. CMS-PAS-HIG-14-020, CMS Collaboration (2014)

  35. A. Heister et al., ALEPH. Phys. Lett. B 543, 1 (2002). (hep-ex/0207054)

    Article  ADS  Google Scholar 

  36. M. Aoki, R. Guedes, S. Kanemura, S. Moretti, R. Santos, K. Yagyu, Light charged Higgs bosons at the LHC in two-Higgs-doublet models. Phys. Rev. D 84(5), 055028 (2011)

    Article  ADS  Google Scholar 

  37. A. Arhrib, R. Benbrik, S. Moretti, Bosonic decays of charged Higgs bosons in a 2HDM type-I. Eur. Phys. J. C 77, 621 (2017)

    Article  ADS  Google Scholar 

  38. M. Aoki, S. Kanemura, K. Tsumura, K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology. Phys. Rev. D 80(1), 015017 (2009)

    Article  ADS  Google Scholar 

  39. K. Cheung, et al., arXiv: 2201.06890

  40. A.M. Sirunyan, T. Armen, A. Wolfgang, A. Federico, B. Thomas, B. Johannes, D. Marko et al., Search for a charged Higgs boson decaying into top and bottom quarks in events with electrons or muons in proton-proton collisions at s \(\sqrt{\rm s} = 13\) TeV. J. High Energy Phys. 2020(1), 1–48 (2020)

    Google Scholar 

  41. CLIC, The and Charles, TK and Giansiracusa, PJ and Lucas, TG and Rassool, RP and Volpi, M and Balazs, C and Afanaciev, K and Makarenko, V and Patapenka, A and others, The Compact Linear Collider (CLIC)-2018 Summary Report. arxiv:1812.06018

  42. M. Hashemi, H. Gholamhossein, Capability of future linear colliders to discover heavy neutral CP-even and CP-odd Higgs bosons within type-I 2HDM. J. Phys. G 45(2), 095005

  43. M. Hashemi, G. Haghighat, Observability of 2HDM neutral Higgs bosons with different masses at future \(e^{+}e^{-}\) linear colliders. Nucl. Phys. B 951, 114903 (2020)

    MATH  Google Scholar 

  44. P. Czodrowski, Search for Charged Higgs Bosons with the ATLAS Detector at the LHC, Ph.D. diss., Dresden, Tech. U. (2013)

  45. M. Krawczyk, S. Moretti, P. Osland, G.M. Pruna, R. Santos, Prospects for 2HDM charged Higgs searches. J. Phys. Conf. Ser. 873(1), 012048 (2017)

    Article  Google Scholar 

  46. M. Misiak, M. Steinhauser, Weak radiative decays of the B meson and bounds on \( M_ {H^\pm } \) in the Two-Higgs-Doublet Model. Eur. Phys. J. C 77(3), 1–9 (2017)

    Google Scholar 

  47. A. Arbey, F. Mahmoudi, O. Stal, T. Stefaniak, Status of the charged Higgs boson in two Higgs doublet models. Eur. Phys. J. C 3, 182 (2018)

    Article  ADS  Google Scholar 

  48. A. Arhrib, B. Rachid, H. Hicham, M. Stefano, W. Yan, Y. Qi-Shu, Implications of light charged Higgs boson at the LHC Run III in the 2HDM. arXiv:2003.11108

  49. S. Torbj0rn, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015)

  50. D. Eriksson, J. Rathsman, O. Stal, 2HDMC-two-Higgs-Doublet model calculator. Comput. Phys. Commun. 181, 189 (2010)

    Article  ADS  MATH  Google Scholar 

  51. The reference manual can be obtained at the URL. http://lcgapp.cern.ch/project/simu/HepMC/

  52. R. Brun, F. Rademakers, ROOT-an object oriented data analysis framework. Nucl. Instrum. Meth. A 389, 81–86 (1997)

    Article  ADS  Google Scholar 

  53. A. Arhrib, R. Benbrik, S. Moretti, Bosonic decays of charged Higgs bosons in a 2HDM type-I. Eur. Phys. J. C 77(9), 1–6 (2017)

    Article  Google Scholar 

  54. F. Kling, A. Pyarelal, S. Shufang, Light charged Higgs bosons to AW/HW via top decay. J. High Energy Phys. 2015(11), 1–21 (2015)

    Article  Google Scholar 

  55. A.G. Akeroyd, S. Moretti, J. Hernandez-Sanchez, Light charged Higgs bosons decaying to charm and bottom quarks in models with two or more Higgs doublets. Phys. Rev. D 85(11), 115002 (2012)

    Article  ADS  Google Scholar 

  56. A. Djouadi, J. Kalinowski, P.M. Zerwas, Two-and three-body decay modes of susy Higgs particles. Zeitschrift für Physik C Particles and Fields 70(3), 435–447 (1996)

    Article  Google Scholar 

  57. S. Moretti , W.J. Stirling, Phys. Lett. B 347, 291 Erratum: [Phys.Lett.B366, 451 (1996)] [hep-ph/9412209, hep-ph/9511351] (1995)

  58. A.G. Akeroyd, Three-body decays of Higgs bosons at LEP2 and application to a hidden fermiophobic Higgs. Nucl. Phys. B 544(3), 557–575 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  59. A. Arhrib, R. Benbrik, R. Enberg, W. Klemm, S. Moretti, S. Munir, Identifying a light charged Higgs boson at the LHC Run II. Phys. Lett. B 774, 591–598 (2017)

  60. H., Henning, T. Stefaniak, J. Wittbrodt., The forgotten channels: charged Higgs boson decays to a \( W^{pm } \)and a non-SM-like Higgs boson. J. High Energy Phys. 2021(6), 183 (2021)

  61. D. Eriksson, J. Rathsman, O. Stal, 2HDMC-two-Higgs-doublet model calculator. arXiv:0902.0851

  62. E. Boos et al., CompHEP 4.4–automatic computations from lagrangians to events. Nucl. Instrum. Meth. A 534, 250–259 (2004)

    Article  ADS  Google Scholar 

  63. A. Pukhov, et al., CompHEP-a package for evaluation of n diagrams and integration over multi-particle phase space. arXiv: hep-ph/9908288 (1999)

  64. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 3, 1896 (2012)

    Article  ADS  MATH  Google Scholar 

  65. M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algorithm. JHEP 4063 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Kausar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kausar, N., Ahmed, I. & Ather, M.W. Charged Higgs observability via charged Higgs pair production at future lepton collider. Eur. Phys. J. Plus 137, 603 (2022). https://doi.org/10.1140/epjp/s13360-022-02819-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02819-z

Navigation