Skip to main content
Log in

Effects of heat-flux vector and Braginskii viscosity on wave dissipation and instabilities in rotating gravitating anisotropic plasmas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The pressure anisotropy-driven magnetohydrodynamic (MHD) waves and instabilities are the significant sources of energy transfer in astrophysical outflows, such as solar wind, spiral arms of galaxies and accretion disks. The heat-flux corrections, rotation and anisotropic viscosity play an unavoidable role in the wave dissipation and instabilities in such systems. In this work, we have investigated the effects of heat-flux vector and Braginskii viscosity tensor on the low-frequency hydromagnetic Chew–Goldberger–Low (CGL) waves, firehose instability and gravitational instability in uniformly rotating, strongly magnetized and anisotropic heat-conducting plasmas. The Braginskii viscosity tensor is considered in the CGL fluid equations, including heat-flux corrections and uniform rotation, keeping in mind the actual physical conditions of spiral arms of galaxies and solar coronal heating. The linear dispersion properties of gravitational instability, firehose instability, slow and fast CGL wave dissipation have been analyzed in various parametric limits. The dynamical stability of the system is discussed using the Routh–Hurwitz criterion. It is found that in the transverse propagation, the growth rate of the gravitational instability is decreased due to the presence of viscosity, and it remains unaffected due to the heat-flux corrections. In the parallel propagation, the effects of viscosity and heat-flux parameters are found to decrease the threshold wavenumber and stabilize the growth rate of gravitational instability. The upper and lower bounds of wavenumbers that determine the system’s stability, instability and overstability are decreased due to the viscosity and rotation parameters. The numerical calculations of various parameters show that gravitational instability plays a vital role in the spiral arms of the galaxies. The present results have been applied to understand the influence of heat-flux vector, rotation and viscosity on the slow and fast magnetosonic modes in the solar coronal heating mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M.M. Motiei, M. Hosseinirad, S. Abbassi, Mon. Not. Roy. Astron. Soc. 502, 6188 (2021)

    Article  ADS  Google Scholar 

  2. R.P. Prajapati, Mon. Not. Roy. Astron. Soc. 510, 2127 (2022)

    Article  ADS  Google Scholar 

  3. J. Huang, J.C. Kasper, D. Vech, K.G. Klein, M. Stevens, M.M. Martinović, B.L. Alterman, T. Ďurovcová, K. Paulson, B.A. Maruca, R.A. Qudsi, A.W. Case, K.E. Korreck, L.K. Jian, M. Velli, B. Lavraud, A. Hegedus, C.M. Bert, J. Holmes, S.D. Bale, D.E. Larson, R. Livi, P. Whittlesey, M. Pulupa, R.J. MacDowall, D.M. Malaspina, J.W. Bonnell, P. Harvey, K. Goetz, T.D. de Wit, Astrophys. J. Suppl. Ser. 246, 70 (2020)

    Article  ADS  Google Scholar 

  4. T.D. Phan, S.D. Bale, J.P. Eastwood, B. Lavraud, J.F. Drake, M. Oieroset, M.A. Shay, M. Pulupa, M. Stevens, R.J. MacDowall, A.W. Case, D. Larson, J. Kasper, P. Whittlesey, A. Szabo, K.E. Korreck, J.W. Bonnell, T.D. de Wit, K. Goetz, P.R. Harvey, T.S. Horbury, R. Livi, D. Malaspina, K. Paulson, N.E. Raouafi, M. Velli, Astrophys. J. Suppl. Ser. 246, 34 (2020)

    Article  ADS  Google Scholar 

  5. A.A. Schekochihin, S.C. Cowley, R.M. Kulsrud, G.W. Hammett, P. Sharma, Astrophys. J. 629, 139 (2005)

    Article  ADS  Google Scholar 

  6. H. Sun, J. Zhao, H. Xie, D. Wu, Astrophys. J. 884, 44 (2019)

    Article  ADS  Google Scholar 

  7. C.-S. Jao, L.-N. Hau, Phys. Rev. E 101, 043205 (2020)

    Article  ADS  Google Scholar 

  8. M.W. Kunz, A.A. Schekochihin, J.M. Stone, Phys. Rev. Lett. 112, 205003 (2014)

    Article  ADS  Google Scholar 

  9. E.S. Uchava, A.G. Tevzadze, Phys. Plasmas 27, 112901 (2020)

    Article  ADS  Google Scholar 

  10. M. Lazar, S. Poedts, R. Schlickeiser, Astron. Astrophys. 534, A116 (2011)

    Article  ADS  Google Scholar 

  11. X. Meng, B. van der Holst, G. Tóth, T.I. Gombosi, Mon. Not. Roy. Astron. Soc. 454, 3697 (2015)

    Article  ADS  Google Scholar 

  12. M. Khalid, F. Hadi, A. ur Rahman, Eur. Phys. J. Plus 136, 1061 (2021)

    Article  Google Scholar 

  13. H. Naim, I.A. Khan, Z. Iqbal, G. Murtaza, Eur. Phys. J. Plus 134, 442 (2019)

    Article  Google Scholar 

  14. J.V. Hollweg, Astrophys. J. 306, 730 (1986)

    Article  ADS  Google Scholar 

  15. I.J.D. Craig, Y.E. Litvinenko, Astrophys. J. 725, 866 (2010)

    Article  ADS  Google Scholar 

  16. B.C. Landseer-Jones, Mon. Not. Roy. Astron. Soc. 122, 89 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  17. N. Kumar, P. Kumar, S. Singh, Astron. Astrophys. 453, 1067 (2006)

    Article  ADS  Google Scholar 

  18. S. Braginskii, Rev. Plasma Physics 1, 205 (1965)

    ADS  Google Scholar 

  19. D. Montgomery, J. Geophys. Res. 97, 4309 (1992)

    Article  ADS  Google Scholar 

  20. S.A. Balbus, Astrophys. J. 616, 857 (2004)

    Article  ADS  Google Scholar 

  21. T. Berlok, R. Pakmor, C. Pfrommer, Mon. Not. Roy. Astron. Soc. 491, 2919 (2020)

    Article  ADS  Google Scholar 

  22. L.J. Porter, J.A. Klimchuk, P.A. Sturrock, Astrophys. J. 435, 482 (1994)

    Article  ADS  Google Scholar 

  23. L. Ofman, J.M. Davila, R.S. Steinolfson, Astrophys. J. 421, 360 (1994)

    Article  ADS  Google Scholar 

  24. A. Mengesha, S.B. Tessema, J. Plasma Phys. 79, 535 (2013)

    Article  ADS  Google Scholar 

  25. A.M. Cherkos, J. Astrophys. Astron. 39, 22 (2018)

    Article  ADS  Google Scholar 

  26. J.E.C. Gliddon, Astrophys. J. 145, 583 (1966)

    Article  ADS  Google Scholar 

  27. H. Ren, J. Cao, Z. Wu, P.K. Chu, Phys. Plasmas 18, 092117 (2011)

    Article  ADS  Google Scholar 

  28. N.S. Dzhalilov, V.D. Kuznetsov, J. Staude, Astron. Astrophys. 489, 769 (2008)

    Article  ADS  Google Scholar 

  29. R.P. Prajapati, A.K. Parihar, R.K. Chhajlani, Phys. Plasmas 15, 012107 (2008)

    Article  ADS  Google Scholar 

  30. X. Meng, G. Tóth, M.W. Liemohn, T.I. Gombosi, A. Runov, J. Geophys. Res. 117, A08216 (2012)

    ADS  Google Scholar 

  31. K.M. Ferrière, Nonlin. Proc. Geophys. 11, 731 (2004)

    Article  ADS  Google Scholar 

  32. P. Hunana, A. Tenerani, G.P. Zank, E. Khomenko, M.L. Goldstein, G.M. Webb, P.S. Cally, M. Collados, M. Velli, L. Adhikari et al., J. Plasma Phys. 85, 205850602 (2019)

    Article  Google Scholar 

  33. B.J. Wang, L.N. Hau, J. Geophys. Res.: Space Phys. 108, 1463 (2003)

    Article  ADS  Google Scholar 

  34. A. Achterberg, Mon. Not. Roy. Astron. Soc. 436, 705 (2013)

    Article  ADS  Google Scholar 

  35. P. Hunana, G.P. Zank, Astrophys. J. 839, 13 (2017)

    Article  ADS  Google Scholar 

  36. M. Chou, L.-N. Hau, Astrophys. J. 611, 1200 (2004)

    Article  ADS  Google Scholar 

  37. J.M.A. Ashbourn, L.C. Woods, Astron. Astrophys. 455, 1115 (2006)

    Article  ADS  Google Scholar 

  38. Y.C. Whang, J. Geophys. Res. 76, 7503 (1971)

    Article  ADS  Google Scholar 

  39. G.L. Kalra, B. Singh, S.N. Kathuria, J. Plasma Phys. 34, 313 (1985)

    Article  ADS  Google Scholar 

  40. B. Singh, G.L. Kalra, Astrophys. J. 304, 6 (1986)

    Article  ADS  Google Scholar 

  41. M.P. Bora, N.K. Nayyar, Astrophys. Space Sci. 179, 313 (1991)

    Article  ADS  Google Scholar 

  42. R.A. López, M. Lazar, S.M. Shaaban, S. Poedts, P.S. Moya, Astrophys. J. 900, L25 (2020)

    Article  ADS  Google Scholar 

  43. U.D. Goker, Sun and Geosphere 3, 46 (2008)

    ADS  Google Scholar 

  44. K. Ferrière, Space Sci. Rev. 122, 247 (2006)

    Article  ADS  Google Scholar 

  45. V. Hoffmann, A.B. Romeo, Mon. Not. Roy. Astron. Soc. 425, 1511 (2012)

    Article  ADS  Google Scholar 

  46. G.-X. Li, Mon. Not. Roy. Astron. Soc. 465, 667 (2017)

    Article  ADS  Google Scholar 

  47. E.T. Desta, A. Hillier, T.H. Eritro, Phys. Plasmas 28, 042901 (2021)

    Article  ADS  Google Scholar 

  48. S.A. Balbus, J.F. Hawley, Astrophys. J. 376, 214 (1991)

    Article  ADS  Google Scholar 

  49. P. Sharma, G.W. Hammett, E. Quataert, Astrophys. J. 596, 1121 (2003)

    Article  ADS  Google Scholar 

  50. B.P. Pandey, M. Wardle, Mon. Not. Roy. Astron. Soc. 423, 222 (2012)

    Article  ADS  Google Scholar 

  51. M.S. Rosin, A.J. Mestel, Mon. Not. Roy. Astron. Soc. 425, 74 (2012)

    Article  ADS  Google Scholar 

  52. P. Goldreich, D. Lynden-Bell, Mon. Not. Roy. Astron. Soc. 130, 97 (1965)

    Article  ADS  Google Scholar 

  53. J.T. Schmelz, G.D. Holman, J.W. Brosius, R.D. Gonzalez, Astrophys. J. 399, 733 (1992)

    Article  ADS  Google Scholar 

  54. M. Kingsland, H.-Y.K. Yang, C.S. Reynolds, J.A. Zuhone, Astrophys. J. 883, L23 (2019)

    Article  ADS  Google Scholar 

  55. E. Zweibel, Solar Phys. 66, 305 (1980)

    Article  ADS  Google Scholar 

  56. S.R. Habbal, E. Leer, Astrophys. J. 253, 318 (1982)

    Article  ADS  Google Scholar 

  57. A.M. Cherkos, S.B. Tessema, J. Plasma Phys. 79, 805 (2013)

    Article  ADS  Google Scholar 

  58. G.W. Pneuman, Astrophys. J. 145, 800 (1966)

    Article  ADS  Google Scholar 

  59. J. Sharma, B. Kumar, A.K. Malik, H.O. Vats, Mon. Not. Roy. Astron. Soc. 492, 5391 (2020)

    Article  ADS  Google Scholar 

  60. S.A. Khoperskov, S.S. Khrapov, Astron. Astrophys. 609, A104 (2018)

    Article  ADS  Google Scholar 

  61. L. Ofman, J.A. Klimchuk, J.M. Davila, Astrophys. J. 493, 474 (1998)

    Article  ADS  Google Scholar 

  62. G.P. Zank, L.-L. Zhao, L. Adhikari, D. Telloni, J.C. Kasper, S.D. Bale, Phys. Plasmas 28, 080501 (2021)

    Article  ADS  Google Scholar 

  63. R. J. Bray, L. Cram, C. Durrant, R. Loughhead, Camb. Astrophys. Series 18 (1991)

  64. S. White, M. Kundu, N. Gopalswamy, Astrophys. J. Suppl. Ser. 78, 599 (1992)

    Article  ADS  Google Scholar 

  65. J.T. Schmelz, J.L.R. Saba, K.T. Strong, Astrophys. J. 398, L115 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Addis Ababa University SIDA project No. 51080124 and Indian Space Research Organisation (ISRO) Bangalore under ISRO-RESPOND scheme through grant No. ISRO/RES/2/427/21-22. Author ETD acknowledges Centre for Atmospheric Research (CAR), NASRDA, Nigeria for their hospitality during his stay as visiting researcher. Author RPP gratefully acknowledges Inter-University Center for Astronomy and Astrophysics (IUCAA), Pune (India), for awarding him Visiting Associateship. The authors are thankful to the anonymous reviewers for their constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Prasad Prajapati.

Appendices

A Solutions of various equations given in Sect. 2

The divergence of perturbed viscosity stress tensor Eqs. (1315) can be written as

$$\begin{aligned}&\nabla \cdot \delta {\varvec{\Pi }} _{x} = \frac{\eta _{0}}{3}(k^{2}_{\perp }\delta v_{x}-2k_{\perp }k_{\parallel }\delta v_{z}), \end{aligned}$$
(69)
$$\begin{aligned}&\nabla \cdot \delta {\varvec{\Pi }} _{y} = 0, \end{aligned}$$
(70)
$$\begin{aligned}&\nabla \cdot \delta {\varvec{\Pi }} _{z} = -2\frac{\eta _{0}}{3}(k_{\perp }k_{\parallel }\delta v_{x}-2k^{2}_{\parallel }\delta v_{z}). \end{aligned}$$
(71)

In Eq. (19), the magnetic pressure term can be expressed as

$$\begin{aligned} \frac{1}{4\pi }[(\nabla \times \delta \mathbf {B})\times \mathbf {B_0}] = -\frac{B^{2}_{0}}{4\pi } \left( \begin{array}{l} \partial _{x}\delta b_{z} - \partial _{z}\delta b_{x}\\ \\ \partial _{y}\delta b_{z}-\partial _{z}\delta b_{y}\\ \\ 0 \end{array} \right) . \end{aligned}$$
(72)

Using Eq. (23) the pressure stress tensor term can be expressed as

$$\begin{aligned} \nabla \cdot \delta {{\mathop { \mathbf {P }}\limits ^{\leftrightarrow }}} =\left( \begin{array}{l} \partial _{x} \delta p_{\perp } ~~~+~~~ (p_{\parallel 0} - p_{\perp 0})\partial _{z} \delta b_{x} \\ \\ \partial _{y} \delta p_{\perp } ~~~+~~~ (p_{\parallel 0} - p_{\perp 0})\partial _{z} \delta b_{y}\\ \\ \partial _{z} \delta p_{\parallel } ~~~+~~~ (p_{\parallel 0} - p_{\perp 0})[\partial _{x} \delta b_{x} + \partial _{y} \delta b_{y} + 2\partial _{z} \delta b_{z}] \end{array} \right) , \end{aligned}$$
(73)

where \(\partial _{x,y,x}=\partial /\partial x, \partial /\partial y,\) and \( \partial /\partial z\).

The reduced form of \(\delta p_{\perp }\) and \(\delta p_{\parallel }\) can be obtained by using Eqs. (35) and (37), and doing further simplifications one can solve for \(\delta p_{\parallel }\)

$$\begin{aligned} \xi ^{-1} \frac{\delta p_{\parallel }}{\rho } = {\alpha _1} \frac{k_{\bot }\delta v_{x}}{\omega } + {\beta _1}\frac{k_{\parallel }\delta v_{z}}{\omega }, \end{aligned}$$
(74)

where

$$\begin{aligned} \begin{array}{l} \xi = \frac{ 1 }{(\omega ^{2}-3k^{2}_{\parallel }c^{2}_{s\parallel })}, ~~\alpha _1= c^{2}_{s\parallel }\omega ^{2} - 3 k^{2}_{\parallel }c^{2}_{s\parallel }( c^{2}_{s\parallel } + c^{2}_{s\perp }), ~~~\beta _1= \frac{ 8k_{\parallel } q_{\parallel } \omega ^{2}}{\rho } - 3c^{2}_{s\parallel } (k^{2}_{\parallel }c^{2}_{s\parallel } - \omega ^{2}). \end{array} \end{aligned}$$
(75)

Using Eqs. (36) and (38) and doing further simplifications, we can solve for \(\delta p_{\perp }\) as

$$\begin{aligned} \varvec{\Gamma } ^{-1} \frac{\delta p_{\perp }}{\rho } = \varepsilon \frac{k_{\bot }\delta v_{x}}{\omega } + \nu \frac{k_{\parallel }\delta v_{z}}{\omega }. \end{aligned}$$
(76)

where

$$\begin{aligned} \begin{array}{l} \varvec{\Gamma } = \frac{ 1 }{(\omega ^{2}-k^{2}_{\parallel }c^{2}_{s\parallel })}, ~~ \varepsilon = \frac{k_{\parallel }q_{\perp }}{\rho }\omega + 2 c^{2}_{s\perp }\omega ^{2} - k^{2}_{\parallel }c^{2}_{s\perp }( c^{2}_{s\perp } + c^{2}_{s\parallel }), ~~ \nu = 2\frac{ k_{\parallel } q_{\perp } }{\rho }\omega - c^{2}_{s\perp } ( k^{2}_{s\parallel }c^{2}_{s\parallel } - \omega ^{2}). \end{array} \end{aligned}$$
(77)

B Solutions of the equation of motion

On substituting Eqs. (72) and (73) into Eq. (19) and doing further simplification, one can get:

The \(\hat{\mathbf {x}}-\) component of equation of motion

$$\begin{aligned} \begin{aligned} \rho _{0}\frac{\partial }{\partial t}\delta v_{x}&\,= - \left( p_{\parallel }-p_{\perp }\right) \frac{\partial }{\partial z}\delta b_{x}-\frac{\partial \delta p_{\perp }}{\partial x} -\nabla .\delta \Pi _{x} \\&\quad -\frac{B^{2}_{0}}{4\pi }\left( \frac{\partial }{\partial x}\delta b_{z}-\frac{\partial }{\partial z}\delta b_{x}\right) +\rho _{0}\frac{\partial \delta \phi }{\partial x} + 2\rho \Omega _{z}\delta v_{y}.&\end{aligned} \end{aligned}$$
(78)

The \(\hat{\mathbf {y}}-\) component of equation of motion

$$\begin{aligned} \begin{aligned} \rho _{0}\frac{\partial }{\partial t}\delta v_{y}&\,= - \left( p_{\parallel }-p_{\perp }\right) \frac{\partial }{\partial z}\delta b_{y}-\frac{\partial \delta p_{\perp }}{\partial y} -\nabla .\delta \Pi _{y} \\&\quad -\frac{B^{2}_{0}}{4\pi }\left( \frac{\partial }{\partial y}\delta b_{z}-\frac{\partial }{\partial z}\delta b_{y}\right) +\rho _{0}\frac{\partial \delta \phi }{\partial y} +2\rho _0 \left( \Omega _{x}\delta v_{z} - \Omega _{z}\delta v_{x}\right) .&\end{aligned} \end{aligned}$$
(79)

The \(\hat{\mathbf {z}}-\) component of equation of motion

$$\begin{aligned} \rho _{0}\frac{\partial }{\partial t}\delta v_{z}= -\left( p_{\parallel }-p_{\perp }\right) \left( \frac{\partial }{\partial x}\delta b_{x}+\frac{\partial }{\partial y}\delta b_{y}\right) -\frac{\partial \delta p_{\parallel }}{\partial z} -\nabla .\delta \Pi _{z}+\rho _{0}\frac{\partial \delta \phi }{\partial z}+ 2\rho \Omega _{x}\delta v_{y}. \end{aligned}$$
(80)

After substituting the relevant perturbations and derivatives, one can obtain

$$\begin{aligned}&\begin{aligned} \omega \rho _{0}\delta v_{x} =&-k_{\parallel }\left( p_{0\parallel }-p_{0\perp }\right) \left( \frac{k_{\parallel } \delta v_{x}}{\omega }\right) + k_{\perp }\Gamma \rho _{0}\times \left( \varepsilon k_{\perp }\frac{\delta v_{x}}{\omega } + \nu k_{\parallel }\frac{\delta v_{z}}{\omega }\right) \\&-\mathrm {i}\frac{\eta _{0}}{3}\left( k^{2}_{\perp }\delta v_{x} - 2k_{\perp }k_{\parallel }\delta v_{z}\right) \\&+ \frac{B^{2}_{0}}{4\pi }\left( k^{2}_{\perp }\frac{\delta v_{x}}{\omega } + k^{2}_{\parallel }\frac{\delta v_{z}}{\omega }\right) -\frac{4\pi G\rho ^{2}_{0}}{k^{2}\omega }\times \left( k^{2}_{\perp }\delta v_{x} + k_{\perp }k_{\parallel }\delta v_{z}\right) + \mathrm {i}2\rho _{0}\Omega _{z}\delta v_{y}, \end{aligned} \end{aligned}$$
(81)
$$\begin{aligned}&\omega \rho _{0}\delta v_{y} = -k^{2}_{\parallel }\left( p_{0\parallel }-p_{0\perp }\right) \frac{\delta v_{x}}{\omega } + \frac{B^{2}_{0}}{4\pi }\left( \frac{k^{2}_{\parallel }\delta v_{y}}{\omega }\right) +\mathrm {i}2\rho _{0}\left( \Omega _{x}\delta v_{z}-\Omega _{z}\delta v_{x}\right) , \end{aligned}$$
(82)
$$\begin{aligned}&\begin{aligned} \omega \rho _{0}\delta v_{z} =&-\left( p_{0\parallel }-p_{0\perp }\right) k_{\perp }k_{\parallel }\frac{\delta v_{x}}{\omega } + k_{\parallel }\delta p_{\parallel }\\&- \frac{4\pi G \rho ^{2}_{0}}{k^{2}\omega }\left( k^{2}_{\perp }\delta v_{x} + k_{\perp }k_{\parallel }\delta v_{z}\right) + \mathrm {i}\frac{2\eta _{0}}{3}(k_{\perp }k_{\parallel }\delta v_{x} - 2k^{2}_{\parallel }) \\&+ \xi k_{\parallel }\rho _{0}(\alpha \frac{k_{\parallel }\delta v_{x}}{\omega } + \beta \frac{k_{\parallel }\delta v_{z}}{\omega }) +\mathrm {i}2\rho _{0}\Omega _{x}\delta v_{y}. \end{aligned} \end{aligned}$$
(83)

C The matrix elements of the matrix \([A_{lm}]\)

$$\begin{aligned}&A_{11} = (\omega ^{2}-k^{2}_{\parallel }c^{2}_{s\parallel })\left[ \omega ^{2}+k^{2}_{\parallel }\left( c^{2}_{s\parallel }-c^{2}_{s\perp }\right) -k^{2}v^{2}_{A} + \mathrm {i}\frac{\eta _{0}}{3\rho _{0}}\omega k^{2}_{\perp } + \frac{4\pi G \rho _{0}}{k^{2}}k^{2}_{\perp } \right] \nonumber \\&\qquad \qquad - k^{2}_{\perp }\left[ 2\omega ^{2}c^{2}_{s\perp } + \frac{k_{\parallel }q_{\perp }}{\rho }\omega - k^{2}_{\parallel }c^{2}_{s\perp }\left( c^{2}_{s\perp }+ c^{2}_{s\parallel }\right) \right] ,\nonumber \\&A_{12} = -2 \mathrm {i}\omega \Omega _{z}\left( \omega ^{2}-k^{2}_{\parallel }c^{2}_{s\parallel }\right) ,\nonumber \\&A_{13} = -k_{\perp }k_{\parallel }\left[ 2 \frac{k_{\parallel }q_{\perp }}{\rho }\omega - \left( k^{2}_{\parallel }c^{2}_{s\parallel }-\omega ^{2}\right) \left( c^{2}_{s\perp } + \mathrm {i}2\frac{\eta _{0}}{3\rho _{0}}\omega - \right. \left. \frac{4\pi G\rho _{0}}{k^{2}}\right) \right] ,\nonumber \\&A_{21} = 2\mathrm {i} \omega \Omega _{z},\nonumber \\&A_{22} = \omega ^{2} - k^{2}_{\parallel }\left( v^{2}_{A}+ c^{2}_{s\perp } - c^{2}_{s\parallel }\right) ,\nonumber \\&A_{23} = -2\mathrm {i}\omega \Omega _{x},\nonumber \\&A_{31} = k_{\perp }k_{\parallel }\left[ \left( \omega ^{2} - 3k^{2}_{\parallel }c^{2}_{s\parallel }\right) \left( c^{2}_{s\parallel } - c^{2}_{s\perp } + \frac{4\pi G\rho _{0}}{k^{2}}-\mathrm {i}\frac{2\eta _{0}}{3\rho _{0}}\omega \right) -\omega ^{2}c^{2}_{s\parallel } + 3k^{2}_{\parallel }c^{2}_{s\parallel }\left( c^{2}_{s\parallel }+ c^{2}_{s\perp }\right) \right] ,\nonumber \\&A_{32} = 2\mathrm {i}\omega \Omega _{x}\left( \omega ^{2} - 3k^{2}_{\parallel }c^{2}_{s\parallel }\right) ,\nonumber \\&A_{33} = (\omega ^{2} - 3k^{2}_{\parallel }c^{2}_{s\parallel })\left[ \omega ^{2} + \frac{4\pi G\rho _{0}}{k^{2}}k^{2}_{\parallel } + \mathrm {i}\frac{4\eta _{0}}{3\rho _{0}}k^{2}_{\parallel }\omega \right] - k^{2}_{\parallel }\left[ 8\frac{k_{\parallel }q_{\parallel }}{\rho _{0}}\omega + 3c^{2}_{s\parallel }(\omega ^{2} - k^{2}_{\parallel }c^{2}_{s\parallel })\right] . \end{aligned}$$
(84)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desta, E.T., Prajapati, R.P. & Eritro, T.H. Effects of heat-flux vector and Braginskii viscosity on wave dissipation and instabilities in rotating gravitating anisotropic plasmas. Eur. Phys. J. Plus 137, 437 (2022). https://doi.org/10.1140/epjp/s13360-022-02644-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02644-4

Navigation