Skip to main content
Log in

Shadow and weak gravitational lensing of a rotating regular black hole in a non-minimally coupled Einstein-Yang-Mills theory in the presence of plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The null geodesics of the regular and rotating magnetically charged black hole in a non-minimally coupled Einstein-Yang-Mills theory surrounded by a plasma medium is studied. The effect of magnetic charge and Yang-Mills parameter on the effective potential and radius of photon orbits has investigated. We then study the shadow of a regular and rotating magnetically charged black hole along with the observables in the presence of the plasma medium. The presence of plasma medium affects the apparent size of the shadow of a regular rotating black hole in comparison with vacuum case. Variation of shadow radius and deformation parameter with Yang-Mills and plasma parameter has examined. Furthermore, the deflection angle of the massless test particles in weak field approximation around this black hole spacetime in the presence of homogeneous plasma medium is also investigated. Finally, we have compared the obtained results with Kerr-Newman and Schwarzschild black hole solutions in general relativity (GR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. J.B. Hartle, Gravity: an introduction to Einstein’s general relativity. San Francisco: Addison-Wesley (2003)

  2. P.S. Joshi, Global aspects in gravitation and cosmology. Int. Ser. Monogr. Phys 87, 43–59 (1993)

    MathSciNet  MATH  Google Scholar 

  3. S. Chandrasekhar, The mathematical theory of black holes, vol. 69 (Oxford University Press, Oxford, 1998)

    MATH  Google Scholar 

  4. K. Akiyama, et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J., 875(1):L1, (2019)

  5. K. Akiyama, et al. First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophys. J. Lett. 875(1):L2, (2019)

  6. K. Akiyama, et al. First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophys. J. Lett., 875(1):L3, (2019)

  7. K. Akiyama, et al. First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophys. J. Lett., 875(1):L4, (2019)

  8. K. Akiyama, et al. First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophys. J. Lett., 875(1):L5, (2019)

  9. K. Akiyama, et al. First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophys. J. Lett., 875(1):L6, (2019)

  10. J.L. Synge, Relativity: The general theory. Amsterdam: North-Holland Pub. Co (1960)

  11. J.L. Synge, The escape of photons from gravitationally intense stars. Monthly Notices R. Astronom. Soc. 131(3), 463–466 (1966)

    Article  ADS  Google Scholar 

  12. R. Takahashi, Black hole shadows of charged spinning black holes. Publicat. Astronom. Soc. Japan 57(2), 273–277 (2005)

    Article  ADS  Google Scholar 

  13. M. Amir, S.G. Ghosh, Shapes of rotating nonsingular black hole shadows. Phys. Rev. D 94(2), 024054 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Amir, B. Pratap Singh, S.G. Ghosh, Shadows of rotating five-dimensional charged emcs black holes. Eur. Phys. J. C 78(5), 1–15 (2018)

    Article  Google Scholar 

  15. P.V. Cunha, C.A. Herdeiro, E. Radu, Fundamental photon orbits: black hole shadows and spacetime instabilities. Phys. Rev. D 96(2), 024039 (2017)

    Article  ADS  Google Scholar 

  16. S.E. Gralla, D.E. Holz, R.M. Wald, Black hole shadows, photon rings, and lensing rings. Phys. Rev. D 100(2), 024018 (2019)

    Article  ADS  Google Scholar 

  17. Z. Stuchlík, D. Charbulák, J. Schee, Light escape cones in local reference frames of kerr-de sitter black hole spacetimes and related black hole shadows. Eur. Phys. J. C. 78(3), 1–32 (2018)

    Article  Google Scholar 

  18. J.W. Moffat, Modified gravity black holes and their observable shadows. Eur. Phys. J. C. 75(3), 1–4 (2015)

    Article  ADS  Google Scholar 

  19. M. Guo, P.-C. Li, Innermost stable circular orbit and shadow of the 4 d einstein-gauss-bonnet black hole. Eur. Phys. J. C. 80(6), 1–8 (2020)

    Article  ADS  Google Scholar 

  20. M. Sharif, S. Iftikhar, Shadow of a charged rotating non-commutative black hole. Eur. Phys. J. C. 76(11), 1–9 (2016)

    Article  Google Scholar 

  21. X.-X. Zeng, H.-Q. Zhang, H. Zhang, Shadows and photon spheres with spherical accretions in the four-dimensional gauss-bonnet black hole. Eur. Phys. J. C. 80(9), 1–11 (2020)

    Article  Google Scholar 

  22. U. Papnoi, F. Atamurotov, S.G. Ghosh, B. Ahmedov, Shadow of five-dimensional rotating Myers-Perry black hole. Phys. Rev. D 90(2), 024073 (2014)

    Article  ADS  Google Scholar 

  23. P. Sharma, H. Nandan, U. Papnoi, A. K. Chatterjee, Optical and Thermodynamic Properties of a Rotating Dyonic Black Hole Spacetime in \(\cal{N}= 2, U(1)^2\) gauged supergravity. 5 2(021)

  24. S. Kala, Saurabh H. Nandan, P. Sharma, Deflection of light and shadow cast by a dual-charged stringy black hole. Int. J. Mod. Phys. A, 35(28):2050177, (2020)

  25. J. Peng, M. Guo, X.-H. Feng, Influence of quantum correction on black hole shadows, photon rings, and lensing rings. Chin. Phys. C 45(8), 085103 (2021)

    Article  ADS  Google Scholar 

  26. M. Wang, S. Chen, & J. Jing, Kerr black hole shadows in Melvin magnetic field with stable photon orbits. Physical Review D, 104(8), 084021 (2021)

  27. H.C.D.L. Junior, P.V. Cunha, C.A. Herdeiro, L.C. Crispino, Shadows and lensing of black holes immersed in strong magnetic fields. Phys. Rev. D 104(4), 044018 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. K. Hioki, K. Maeda, Measurement of the Kerr spin parameter by observation of a compact object’s shadow. Phys. Rev. D 80, 024042 (2009)

    Article  ADS  Google Scholar 

  29. L. Amarilla, E.F. Eiroa, G. Giribet, Null geodesics and shadow of a rotating black hole in extended Chern-Simons modified gravity. Phys. Rev. D 81, 124045 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Kumar, S.G. Ghosh, A. Wang, Shadow cast and deflection of light by charged rotating regular black holes. Phys. Rev. D 100(12), 124024 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Khodadi, A. Allahyari, S. Vagnozzi, D.F. Mota, Black holes with scalar hair in light of the event horizon telescope. J. Cosmol. Astropart. Phys. 2020(09), 026 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. E. Contreras, J.M. Ramirez-Velasquez, A. Rincón, G. Panotopoulos, P. Bargueño, Black hole shadow of a rotating polytropic black hole by the newman-janis algorithm without complexification. Eur. Phys. J. C 79(9), 1–10 (2019)

    Article  Google Scholar 

  33. E. Contreras, Á. Rincón, G. Panotopoulos, P. Bargueño, Geodesic analysis and black hole shadows on a general non-extremal rotating black hole in five-dimensional gauged supergravity. Ann. Phys. 432, 168567 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Wang, S. Chen, J. Wang, J. Jing, Shadow of a schwarzschild black hole surrounded by a bach-weyl ring. Eur. Phys. J. C 80(2), 1–11 (2020)

    Article  Google Scholar 

  35. R. Kumar, S.G. Ghosh, Ghosh Black hole parameter estimation from its shadow. Astrophys. J. 892(2), 78 (2020)

    Article  ADS  Google Scholar 

  36. K. Jusufi, Black hole shadows in verlinde’s emergent gravity. Monthly Notices R. Astronom. Soc. 503(1), 1310–1318 (2021)

    Article  ADS  Google Scholar 

  37. F. Atamurotov, S.G. Ghosh, B. Ahmedov, Horizon structure of rotating einstein-born-infeld black holes and shadow. Eur. Phys. J. C 76(5), 1–16 (2016)

    Article  ADS  Google Scholar 

  38. H.-X. Zhang, C. Li, P.-Z. He, Q.-Q. Fan, J.-B. Deng, Optical properties of a brane-world black hole as photons couple to the weyl tensor. Eur. Phys. J. C 80, 1–11 (2020)

    Article  Google Scholar 

  39. S. Dastan, R. Saffari, S. Soroushfar, Shadow of a kerr-sen dilaton-axion black hole. arXiv preprint arXiv:1610.09477, (2016)

  40. S.K. Jha, A. Rahaman, Bumblebee gravity with a kerr-sen like solution and its shadow. Eur. Phys. J. C 81(4), 1–14 (2021)

  41. F. Atamurotov, K. Jusufi, M. Jamil, A. Abdujabbarov, M. Azreg-Aïnou, Axion-plasmon or magnetized plasma effect on an observable shadow and gravitational lensing of a schwarzschild black hole. Phys. Rev. D 104(6), 064053 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  42. V. Perlick, O.Y. Tsupko, G.S. Bisnovatyi-Kogan, Influence of a plasma on the shadow of a spherically symmetric black hole. Physical Review D 92(10), 104031 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. F. Atamurotov, B. Ahmedov, A. Abdujabbarov, Optical properties of black holes in the presence of a plasma: The shadow. Phys. Rev. D 92(8), 084005 (2015)

    Article  ADS  Google Scholar 

  44. V. Perlick, O.Y. Tsupko, Light propagation in a plasma on kerr spacetime: separation of the hamilton-jacobi equation and calculation of the shadow. Phys. Rev. D 95(10), 104003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  45. H. Yan, Influence of a plasma on the observational signature of a high-spin kerr black hole. Phys. Rev. D 99(8), 084050 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  46. B. Ahmedov, B. Turimov, Z. Stuchlík, A. Tursunov, Optical properties of magnetized black hole in plasma. In: International Journal of Modern Physics: Conference Series, Vol. 49, World Scientific, p. 1960018 (2019)

  47. A. Abdujabbarov, B. Toshmatov, Z. Stuchlík, B. Ahmedov, Shadow of the rotating black hole with quintessential energy in the presence of plasma. Int. J. Modern Phys. D 26(06), 1750051 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. G.Z. Babar, A.Z. Babar, F. Atamurotov, Optical properties of kerr–newman spacetime in the presence of plasma. Eur. Phys. J. C 80(8), 1–10, 104003 (2020)

  49. A. Das, A. Saha, S. Gangopadhyay, Shadow of charged black holes in gauss-bonnet gravity. Eur. Phys. J. C 80(3), 1–15 (2020)

    Article  Google Scholar 

  50. G.Z. Babar, A.Z. Babar, F. Atamurotov. Optical properties of kerr-newman spacetime in the presence of plasma (2020). arXiv:2008.05845

  51. Y. Huang, Y.-P. Dong, D.-J. Liu, Revisiting the shadow of a black hole in the presence of a plasma. Int. J. Modern Phys. D 27(12), 1850114 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  52. Q. Li, T. Wang, Gravitational effect of a plasma on the shadow of schwarzschild black holes. arXiv preprint arXiv:2102.00957, (2021)

  53. F. Atamurotov, Observing shadow of the schwarzschild black hole in presence of a plasma. Proc. Int. Astronom. Union 12(S324), 351–352 (2016)

    Article  Google Scholar 

  54. F.-Y. Liu, Y.-F. Mai, W. Wen-Yu, Y. Xie, Probing a regular non-minimal einstein-yang-mills black hole with gravitational lensings. Phys. Lett. B 795, 475–481 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. P. Schneider, J. Ehlers, E. E. Falco, Gravitational lenses as astrophysical tools. In: Gravitational Lenses, pages 467–515. Springer (1992)

  56. P. Schneider, C. Kochanek, J. Wambsganss, Gravitational lensing: strong, weak and micro: Saas-Fee advanced course 33, vol. 33 (Springer Science & Business Media, NY, 2006)

    Book  Google Scholar 

  57. A.O. Petters, H. Levine, J. Wambsganss, Singularity theory and gravitational lensing, vol. 21 (Springer Science & Business Media, NY, 2012)

    MATH  Google Scholar 

  58. C.R. Keeton, A.O. Petters, Formalism for testing theories of gravity using lensing by compact objects: Static, spherically symmetric case. Phys. Rev. D 72(10), 104006 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  59. T.E. Collett, L.J. Oldham, R.J. Smith, M.W. Matthew, K.B. Auger, D. Westfall, R.C. Bacon, K.L. Nichol, K. Koyama. Masters, R. van den Bosch, A precise extragalactic test of general relativity. Science 360(6395), 1342–1346 (2018)

    Article  ADS  Google Scholar 

  60. W.-G. Cao, Y. Xie, Weak deflection gravitational lensing for photons coupled to weyl tensor in a schwarzschild black hole. Eur. Phys. J. C 78(3), 1–18 (2018)

    Article  Google Scholar 

  61. J.L. Synge, Relativity: The special theory. Amsterdam: North-Holland Pub. Co (1965)

  62. J. Bicak, P. Hadrava, General-relativistic radiative transfer theory in refractive and dispersive media. Astronomy Astrophys. 44, 389–399 (1975)

    ADS  MathSciNet  Google Scholar 

  63. G.S. Bisnovatyi-Kogan, O.Y. Tsupko, Gravitational lensing in a non-uniform plasma. Monthly Notices R Astronom. Soc. 404(4), 1790–1800 (2010)

    ADS  Google Scholar 

  64. G.S. Bisnovatyi-Kogan, O.Y. Tsupko, Gravitational lensing in presence of plasma: strong lens systems, black hole lensing and shadow. Universe 3(3), 57 (2017)

    Article  ADS  Google Scholar 

  65. G. Crisnejo, E. Gallo, Weak lensing in a plasma medium and gravitational deflection of massive particles using the gauss-bonnet theorem a unified treatment. Phys. Rev. D 97(12), 124016 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  66. W. Javed, M.B. Khadim, A. Övgün, Weak gravitational lensing by bocharova-bronnikov-melnikov-bekenstein black holes using gauss-bonnet theorem. Eur. Phys. J. Plus 135(7), 1–6 (2020)

    Article  Google Scholar 

  67. F. Atamurotov, A. Abdujabbarov, J. Rayimbaev, Weak gravitational lensing schwarzschild-mog black hole in plasma. Eur. Phys. J. C 81(2), 1–10 (2021)

    Article  Google Scholar 

  68. K. Matsuno, Light deflection by squashed kaluza-klein black holes in a plasma medium. Phys. Rev. D 103(4), 044008 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  69. G. Z. Babar, F. Atamurotov, A. Z. Babar, (2021) Gravitational lensing in 4-d einstein–gauss–bonnet gravity in the presence of plasma. Physics of the Dark Universe, page 100798

  70. G. Zaman, F. Babar, S. Atamurotov, Ul. Islam, Sushant G. Ghosh, Particle acceleration around rotating einstein-born-infeld black hole and plasma effect on gravitational lensing. Phys. Rev. D 103(8), 084057 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  71. S. K. Jha, S. Aziz, A. Rahaman, Optical properties of lorentz violating kerr-sen-like spacetime in the presence of plasma. arXiv preprint arXiv:2103.17021, (2021)

  72. Oleg Yu Tsupko, Deflection of light rays by a spherically symmetric black hole in a dispersive medium. Phys. Rev. D 103(10), 104019 (2021)

    Article  MathSciNet  Google Scholar 

  73. A. Rogers, Frequency-dependent effects of gravitational lensing within plasma. Monthly Notices R. Astronom. Soc. 451(1), 17–25 (2015)

    Article  ADS  Google Scholar 

  74. X.H. Jin, Y.X. Gao, D.J. Liu, Strong gravitational lensing of a 4-dimensional einstein-gauss-bonnet black hole in homogeneous plasma. Int. J. Modern Phys. D 29(09), 2050065 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  75. M. Fathi, J.R. Villanueva, Gravitational lensing of a charged weyl black hole surrounded by plasma. arXiv e-prints, pages arXiv–2009, (2020)

  76. S. Hensh, A. Abdujabbarov, J. Schee, Z. Stuchlík, Gravitational lensing around kehagias-sfetsos compact objects surrounded by plasma. Eur. Phys. J. C 79(6), 1–14 (2019)

    Article  Google Scholar 

  77. T. Kimpson, W. Kinwah, S. Zane, Spatial dispersion of light rays propagating through a plasma in kerr space-time. Monthly Notices R. Astronom. Soc. 484(2), 2411–2419 (2019)

    Article  ADS  Google Scholar 

  78. L. Rezzolla, A. Zhidenko, New parametrization for spherically symmetric black holes in metric theories of gravity. Phys. Rev. D 90(8), 084009 (2014)

    Article  ADS  Google Scholar 

  79. A. Sullivan, N. Yunes, T.P. Sotiriou, Numerical black hole solutions in modified gravity theories: Spherical symmetry case. Phys. Rev. D 101(4), 044024 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  80. G.G.L. Nashed, S. Capozziello, Charged spherically symmetric black holes in f (r) gravity and their stability analysis. Phys. Rev. D 99(10), 104018 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  81. A. Aghmohammadi, K. Saaidi, M.R.Abolhassani, A. Vajdi (2010) Spherical symmetric solution in f (r) model around charged black hole. Int. J. Theor. Phys. 49(4), 709–716

  82. T.R.P. Caramês, E.R. de Mello, Spherically symmetric vacuum solutions of modified gravity theory in higher dimensions. Eur. Phys. J. C 64(1), 113–121 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. J.W. Moffat, Black holes in modified gravity (mog). Eur. Phys. J. C 75(4), 1–9 (2015)

    Article  ADS  Google Scholar 

  84. E.T. Newman, A.I. Janis, Note on the kerr spinning-particle metric. J. Math. Phys. 6(6), 915–917 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. M. Azreg-Aïnou, Generating rotating regular black hole solutions without complexification. Phys. Rev. D 90(6), 064041 (2014)

    Article  ADS  Google Scholar 

  86. M. Azreg-Aïnou, Regular and conformal regular cores for static and rotating solutions. Phys. Lett. B 730, 95–98 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. M. Azreg-Ainou, From static to rotating to conformal static solutions: rotating imperfect fluid wormholes with (out) electric or magnetic field. Eur. Phys. J. C 74(5), 1–11 (2014)

    Article  Google Scholar 

  88. B. Toshmatov, Z. Stuchlík, B. Ahmedov, Rotating black hole solutions with quintessential energy. Eur. Phys. J. Plus 132(2), 1–21 (2017)

    Article  MATH  Google Scholar 

  89. X. Zhaoyi, J. Wang, Kerr-newman-ads black hole in quintessential dark energy. Phys. Rev. D 95(6), 064015 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  90. B. Toshmatov, Z. Stuchlík, B. Ahmedov, Comments on “casimir effect in the kerr spacetime with quintessence. Modern Phys. Lett. A 32(21), 1775001 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. R. Shaikh, Black hole shadow in a general rotating spacetime obtained through newman-janis algorithm. Phys. Rev. D 100(2), 024028 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  92. E. Contreras, A. Rincón, G. Panotopoulos, P. Bargueño, B. Koch, Black hole shadow of a rotating scale-dependent black hole. Phys. Rev. D 101(6), 064053 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  93. R. Kumar, S. G. Ghosh, Rotating black holes in the novel \(4 d \) einstein-gauss-bonnet gravity. arXiv preprint arXiv:2003.08927, (2020)

  94. K. Jusufi, M. Jamil, H. Chakrabarty, W. Qiang, C. Bambi, A. Wang, Rotating regular black holes in conformal massive gravity. Phys. Rev. D 101(4), 044035 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  95. C.A. Benavides-Gallego, A. Abdujabbarov, C. Bambi, Rotating and nonlinear magnetic-charged black hole surrounded by quintessence. Phys. Rev. D 101(4), 044038 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  96. C.N. Yang, R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96(1), 191 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. R. Bartnik, J. McKinnon, Particlelike solutions of the einstein-yang-mills equations. Phys. Rev. Lett. 61(2), 141 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  98. J. Bjoraker, Y. Hosotani, Monopoles, dyons, and black holes in the four-dimensional einstein-yang-mills theory. Phys. Rev. D 62(4), 043513 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  99. A. Jaffe, E. Witten, Quantum yang-mills theory. Millennium Prize Probl. 1, 129 (2006)

    MathSciNet  MATH  Google Scholar 

  100. E. Altas, E. Kilicarslan, B. Tekin, Einstein–Yang–Mills theory: gauge invariant charges and linearization instability. Eur. Phys. J. C 81(7), 648 (2021)

    Article  ADS  Google Scholar 

  101. B. Kleihaus, J. Kunz, A. Sood, Sequences of Einstein Yang-Mills dilaton black holes. Phys. Rev. D 54, 5070–5092 (1996)

    Article  ADS  Google Scholar 

  102. B. Kleihaus, J. Kunz, A. Sood, Charged SU(N) Einstein Yang-Mills black holes. Phys. Lett. B 418, 284–293 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  103. B. Kleihaus, J. Kunz, F. Navarro-Lerida, Rotating Einstein-Yang-Mills black holes. Phys. Rev. D 66, 104001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  104. H. Nandan, N.M. Bezares-Roder, H. Dehnen, Black hole solutions and pressure terms in induced gravity with higgs potential. Class. Quant. Grav. 27, 245003 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. N.M. Bezares-Roder, H. Nandan, H. Dehnen, Scalar-field pressure in induced gravity with higgs potential and dark matter. JHEP 10, 113 (2010)

    Article  ADS  MATH  Google Scholar 

  106. JA. Smoller, AG.Wasserman, S.T. Yau, Existence of black hole solutions for the einstein-yang/mills equations. Commun. Math. Phys., 154(2):377–401, (1993)

  107. M.S. Volkov, N. Straumann, Slowly rotating non-abelian black holes. Phys. Rev. Lett. 79(8), 1428 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. B. Kleihaus, J. Kunz, F. Navarro-Lérida, Rotating einstein-yang-mills black holes. Phys. Rev. D 66(10), 104001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  109. B. Kleihaus, J. Kunz, E. Radu, Rotating black holes in dilatonic einstein-gauss-bonnet theory. Phys. Rev. Lett. 106(15), 151104 (2011)

    Article  ADS  Google Scholar 

  110. S.G. Ghosh, N. Dadhich, Radiating black holes in einstein-yang-mills theory and cosmic censorship. Phys. Rev. D 82(4), 044038 (2010)

    Article  ADS  Google Scholar 

  111. K. Jusufi, M. Azreg-Aïnou, M. Jamil, S.W. Wei, W. Qiang, A. Wang, Quasinormal modes, quasiperiodic oscillations, and the shadow of rotating regular black holes in nonminimally coupled einstein-yang-mills theory. Phys. Rev. D 103(2), 024013 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  112. V. Perlick, O.Y. Tsupko, Calculating black hole shadows: review of analytical studies. arXiv preprint arXiv:2105.07101, (2021)

Download references

Acknowledgements

The authors HN and SK are thankful to the Uttarakhand State Council of Science and Technology (UCOST), Dehradun, for financial assistance through R&D grant number UCS&T/RD-18/18-19/16038/4. The authors HN and PS acknowledge the financial support provided by Science and Engineering Research Board (SERB), New Delhi, through the grant number EMR/2017/000339. All authors also acknowledge the facilities at ICARD, Gurukula Kangri (Deemed to be University), Haridwar, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemwati Nandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kala, S., Nandan, H. & Sharma, P. Shadow and weak gravitational lensing of a rotating regular black hole in a non-minimally coupled Einstein-Yang-Mills theory in the presence of plasma. Eur. Phys. J. Plus 137, 457 (2022). https://doi.org/10.1140/epjp/s13360-022-02634-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02634-6

Navigation