Skip to main content
Log in

Free vibration of functionally graded beam embedded in Winkler-Pasternak elastic foundation with geometrical uncertainties using symmetric Gaussian fuzzy number

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article seeks to investigate the effect of geometrical uncertainties on the free vibration of Euler–Bernoulli Functionally Graded (FG) beams resting on Winkler-Pasternak elastic foundation. In this scenario, the uncertainties are linked to length and thickness of FG beam using Symmetric Gaussian Fuzzy Number (SGFN). The governing equations of motion regarding free vibration of the uncertain model are derived by combining the Symmetric Gaussian Fuzzy Number with Hamilton's principle and double parametric form of fuzzy numbers. The natural frequencies of the uncertain models are computed using the double parametric form-based Navier's approach for Hinged-Hinged (H–H) boundary condition. The double parametric form-based Hermite-Ritz approach was also used to calculate the natural frequencies of Hinged-Hinged (H–H), Clamped-Hinged (C-H), and Clamped–Clamped (C–C) boundary conditions. Natural frequencies obtained using Navier's method and Hermite-Ritz method are used to validate the results of the uncertain model which exhibit strong agreement. A comprehensive parametric analysis is also conducted with respect to various graphical and tabular results to investigate the fuzziness or spreads of natural frequencies in relation to various uncertain parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Chen, S.S. Rao, Fuzzy finite-element approach for the vibration analysis of imprecisely-defined systems. Finite Elem. Anal. Des. 27(1), 69–83 (1997)

    Article  Google Scholar 

  2. Z. Qiu, X. Wang, Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int. J. Solids Struct. 40(20), 5423–5439 (2003)

    Article  Google Scholar 

  3. W. Gao, D. Wu, C. Song, F. Tin-Loi, X. Li, Hybrid probabilistic interval analysis of bar structures with uncertainty using a mixed perturbation Monte-Carlo method. Finite Elem. Anal. Des. 47(7), 643–652 (2011)

    Article  MathSciNet  Google Scholar 

  4. G. Muscolino, A. Sofi, Stochastic analysis of structures with uncertain-but-bounded parameters via improved interval analysis. Probab. Eng. Mech. 28, 152–163 (2012)

    Article  Google Scholar 

  5. Y. Xu, Y. Qian, J. Chen, G. Song, Stochastic dynamic characteristics of FGM beams with random material properties. Compos. Struct. 133, 585–594 (2015)

    Article  Google Scholar 

  6. H. Liu, Z. Lv, Q. Li, Flexural wave propagation in fluid-conveying carbon nanotubes with system uncertainties. Microfluids Nanofluids 21(8), 140 (2017)

    Article  Google Scholar 

  7. Z. Lv, H. Liu, Q. Li, Effect of uncertainty in material properties on wave propagation characteristics of nanorod embedded in elastic medium. Int. J. Mech. Mater. Des. 14(3), 375–392 (2018)

    Article  Google Scholar 

  8. H. Liu, Z. Lv, Vibration performance evaluation of smart magneto-electro-elastic nanobeam with consideration of nanomaterial uncertainties. J. Intell. Mater. Syst. Struct. 30, 2932–2952 (2019)

    Article  Google Scholar 

  9. S.K. Jena, S. Chakraverty, R.M. Jena, Propagation of uncertainty in free vibration of Euler-Bernoulli nanobeam. J. Brazil. Soc. Mech. Sci. Eng. 41(10), 436 (2019)

    Article  Google Scholar 

  10. S.K. Jena, S. Chakraverty, M. Malikan, Implementation of non-probabilistic methods for stability analysis of nonlocal beam with structural uncertainties. Eng. Comput. 37(4), 2957–2969 (2021)

    Article  Google Scholar 

  11. S.K. Jena, S. Chakraverty, R.M. Jena, Stability analysis of Timoshenko nanobeam with material uncertainties using a double-parametric form-based analytical approach and Monte Carlo simulation technique. Eur. Phys. J. Plus 135(7), 536 (2020)

    Article  Google Scholar 

  12. Z. Lv, H. Liu, Nonlinear bending response of functionally graded nanobeams with material uncertainties. Int. J. Mech. Sci. 134, 123–135 (2017)

    Article  Google Scholar 

  13. Z. Lv, H. Liu, Uncertainty modeling for vibration and buckling behaviors of functionally graded nanobeams in thermal environment. Compos. Struct. 184, 1165–1176 (2018)

    Article  Google Scholar 

  14. C. Jiang, B.Y. Ni, N.Y. Liu, X. Han, J. Liu, Interval process model and non-random vibration analysis. J. Sound Vib. 373, 104–131 (2016)

    Article  ADS  Google Scholar 

  15. J. Li, C. Jiang, B. Ni, L. Zhan, Uncertain vibration analysis based on the conceptions of differential and integral of interval process. Int. J. Mech. Mater. Des. 16(2), 225–244 (2020)

    Article  Google Scholar 

  16. M. Malikan, T. Wiczenbach, V.A. Eremeyev, Thermal buckling of functionally graded piezomagnetic micro-and nanobeams presenting the flexomagnetic effect. Contin. Mech. Thermodyn. (2021). https://doi.org/10.1007/s00161-021-01038-8

    Article  Google Scholar 

  17. S. Dastjerdi, M. Malikan, V.A. Eremeyev, B. Akgöz, Ö. Civalek, On the generalized model of shell structures with functional cross-sections. Compos. Struct. 272, 114192 (2021)

    Article  Google Scholar 

  18. M. Malikan, V.A. Eremeyev, A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition. Compos. Struct. 249, 112486 (2020)

    Article  Google Scholar 

  19. M. Malikan, F. Tornabene, R. Dimitri, Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals. Mater. Res. Express 5(9), 095006 (2018)

    Article  ADS  Google Scholar 

  20. S.A. Faghidian, Reissner stationary variational principle for nonlocal strain gradient theory of elasticity. Eur J Mech A Solids 70, 115–126 (2018)

    Article  MathSciNet  Google Scholar 

  21. S.A. Faghidian, Higher–order nonlocal gradient elasticity: a consistent variational theory. Int. J. Eng. Sci. 154, 103337 (2020)

    Article  MathSciNet  Google Scholar 

  22. S.A. Faghidian, Contribution of nonlocal integral elasticity to modified strain gradient theory. Eur. Phys. J. Plus 136(5), 559 (2021)

    Article  Google Scholar 

  23. S.A. Faghidian, D. Goudar, G.H. Farrahi, D.J. Smith, Measurement, analysis and reconstruction of residual stresses. J. Strain Anal. Eng. Des. 47(4), 254–264 (2012)

    Article  Google Scholar 

  24. G.H. Farrahi, S.A. Faghidian, D.J. Smith, Reconstruction of residual stresses in autofrettaged thick-walled tubes from limited measurements. Int. J. Press. Vessel. Pip. 86(11), 777–784 (2009)

    Article  Google Scholar 

  25. S.K. Jena, S. Chakraverty, M. Malikan, H. Sedighi, Implementation of Hermite-Ritz method and Navier’s technique for vibration of functionally graded porous nanobeam embedded in Winkler-Pasternak elastic foundation using bi-Helmholtz nonlocal elasticity. J. Mech. Mater. Struct. 15(3), 405–434 (2020)

    Article  MathSciNet  Google Scholar 

  26. M. Malikan, M. Krasheninnikov, V.A. Eremeyev, Torsional stability capacity of a nano-composite shell based on a nonlocal strain gradient shell model under a three-dimensional magnetic field. Int. J. Eng. Sci. 148, 103210 (2020)

    Article  MathSciNet  Google Scholar 

  27. S.A. Faghidian, Two-phase local/nonlocal gradient mechanics of elastic torsion. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6877

    Article  Google Scholar 

  28. S.A. Faghidian, Higher order mixture nonlocal gradient theory of wave propagation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6885

    Article  MATH  Google Scholar 

  29. S. Chakraverty, S. Tapaswini, D. Behera, Fuzzy Differential Equations and Applications for Engineers and Scientists (CRC Press, Boca Raton, 2016)

    Book  Google Scholar 

  30. H. Michael, Applied fuzzy arithmetic an introduction with engineering applications (Springer, Berlin, 2005)

    MATH  Google Scholar 

  31. N. Wattanasakulpong, V. Ungbhakorn, Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp. Sci. Technol. 32, 111–120 (2014)

    Article  Google Scholar 

  32. D. Shahsavari, M. Shahsavari, L. Li, B. Karami, A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp. Sci. Technol. 72, 134–149 (2018)

    Article  Google Scholar 

  33. K.K. Pradhan, S. Chakraverty, Effects of different shear deformation theories on free vibration of functionally graded beams. Int. J. Mech. Sci. 82, 149–160 (2014)

    Article  Google Scholar 

  34. J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  Google Scholar 

  35. B. Uzun, M.Ö. Yaylı, Nonlocal vibration analysis of Ti-6Al-4V/ZrO2 functionally graded nanobeam on elastic matrix. Arab. J. Geosci. 13(4), 1–10 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The first two authors gratefully acknowledge the support provided by the Defence Research and Development Organization (DRDO), New Delhi, India (Sanction Code: DG/TM/ERIPR/GIA/17-18/0129/020). Vinyas Mahesh sincerely acknowledge the financial support by The Royal Society, London through Newton International Fellowship (NIF\R1\212432). H.M. Sedighi is grateful to the Research Council of Shahid Chamran University of Ahvaz for its financial support (Grant No. SCU.EM1400.98).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chakraverty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, S.K., Chakraverty, S., Mahesh, V. et al. Free vibration of functionally graded beam embedded in Winkler-Pasternak elastic foundation with geometrical uncertainties using symmetric Gaussian fuzzy number. Eur. Phys. J. Plus 137, 399 (2022). https://doi.org/10.1140/epjp/s13360-022-02607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02607-9

Navigation