Skip to main content
Log in

Global dynamics and evolution for the Szekeres system with nonzero cosmological constant term

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Szekeres system with cosmological constant term describes the evolution of the kinematic quantities for Einstein field equations in \({\mathbb {R}}^4\). In this study, we investigate the behavior of trajectories in the presence of cosmological constant. It has been shown that the Szekeres system is a Hamiltonian dynamical system. It admits at least two conservation laws, h and \(I_{0}\) which indicate the integrability of the Hamiltonian system. We solve the Hamilton–Jacobi equation, and we reduce the Szekeres system from \({\mathbb {R}}^4\) to an equivalent system defined in \({\mathbb {R}}^2\). Global dynamics are studied where we find that there exists an attractor in the finite regime only for positive valued cosmological constant and \(I_0<-2 .08\). Otherwise, trajectories reach infinity. For \(I_ {0}>0\) the origin of trajectories in \({\mathbb {R}}^2\) is also at infinity. Finally, we investigate the evolution of physical properties by using dimensionless variables different from that of Hubble-normalization conducing to a dynamical system in \({\mathbb {R}}^5\). We see that the attractor at the finite regime in \({\mathbb {R}}^5\) is related with the de Sitter universe for a positive cosmological constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A. Krasiński, Inhomogeneous Cosmological Models (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  2. R. Maartens, W. Lesame, G.F.R. Ellis, Consistency of dust solutions with div H = 0. Phys. Rev. D 55, 5219 (1997). https://doi.org/10.1103/PhysRevD.55.5219

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Szekeres, A class of inhomogeneous cosmological models. Commun. Math. Phys. 41, 55 (1975). https://doi.org/10.1007/BF01608547

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. J.D. Barrow, J. Stein-Schabes, Inhomogeneous cosmologies with cosmological constant. Phys. Lett. A 103, 315 (1984). https://doi.org/10.1016/0375-9601(84)90467-5

    Article  ADS  MathSciNet  Google Scholar 

  5. G.M. Covarrubias, A class of Szekeres space-times with cosmological constant. Astroph. Sp. Sci. 103, 401 (1984). https://doi.org/10.1007/BF00653757

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Bruni, S. Matarrese, P. Ornella, Dynamics of silent universes. Astroph. J. 445, 958 (1995). https://doi.org/10.1086/175755

    Article  ADS  MATH  Google Scholar 

  7. D.A. Szafron, Inhomogeneous cosmologies: new exact solutions and their evolution. J. Math. Phys. 18, 1673 (1977). https://doi.org/10.1063/1.523468

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. S.W. Goode, J. Wainwright, Characterization of locally rotationally symmetric space-times. Gen. Relativ. Gravit. 18, 315 (1986). https://doi.org/10.1007/BF00765890

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J.A.S. Lima, J. Tiommo, Inhomogeneous two-fluid cosmologies. Gen. Relat. Gravit. 20, 1019 (1988). https://doi.org/10.1007/BF00759023

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Bolejko, M.-N. Célérier, A. Krasiński, Inhomogeneous cosmological models: exact solutions and their applications. Class. Quantum Grav. 28, 164002 (2011). https://doi.org/10.1088/0264-9381/28/16/164002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. C. Saulder, S. Mieske, E. van Kampen, W.W. Zeilinger, Hubble flow variations as a test for inhomogeneous cosmology. A&A 622, A83 (2019). https://doi.org/10.1051/0004-6361/201629174

    Article  ADS  Google Scholar 

  12. C. Clarkson, M. Regis, The cosmic microwave background in an inhomogeneous universe. JCAP 02, 013 (2011). https://doi.org/10.1088/1475-7516/2011/02/013

    Article  ADS  Google Scholar 

  13. K. Bolejko, The Szekeres Swiss Cheese model and the CMB observations. Gen. Rel. Gravit. 41, 1737 (2009). https://doi.org/10.1007/s10714-008-0746-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. K. Bolejko, M. Korzyński, Inhomogeneous cosmology and backreaction: Current status and future prospects. IJMPD 26, 1730011 (2017). https://doi.org/10.1142/S0218271817300117

    Article  ADS  Google Scholar 

  15. K. Bolejko, M.-N. Célérier, Szekeres Swiss-cheese model and supernova observations. Phys. Rev. D 82, 103510 (2010). https://doi.org/10.1103/PhysRevD.82.103510

    Article  ADS  Google Scholar 

  16. M. Ishak, A. Peel, Growth of structure in the Szekeres class-II inhomogeneous cosmological models and the matter-dominated era. Phys. Rev. D 85, 083502 (2012). https://doi.org/10.1103/PhysRevD.85.083502

    Article  ADS  Google Scholar 

  17. D. Vrba, O. Svitek, Modelling inhomogeneity in Szekeres spacetime. Gen. Relativ. Grav. 46, 1808 (2014). https://doi.org/10.1007/s10714-014-1808-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. Gierzkiewicz, Z.A. Golda, On integrability of the Szekeres system, I. J. Nonlinear Math. Phys. 23, 494 (2016). https://doi.org/10.1080/14029251.2016.1237199

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Gierzkiewicz, Z.A. Golda, A complete set of integrals and solutions to the Szekeres system. Phys. Lett. A 382, 2085 (2018). https://doi.org/10.1016/j.physleta.2018.05.038

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Paliathanasis, P.G.L. Leach, Symmetries and Singularities of the Szekeres System. Phys. Lett. A 381, 1277 (2017). https://doi.org/10.1016/j.physleta.2017.02.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Ramani, B. Dorizzi, B. Grammaticos, T. Bountis, Integrability and the Painlevé property for low-dimensional systems. J. Math. Phys. 25, 878 (1984). https://doi.org/10.1063/1.526240

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Paliathanasis, A. Zampeli, T. Christodoulakis, M.T. Mustafa, Quantization of the Szekeres system. Class. Quantum Grav. 35, 125005 (2018). https://doi.org/10.1088/1361-6382/aac227

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. P.G.L. Leach, Lie symmetries and Noether symmetries. Applic. Anal. Discrete Math. 6, 238–246 (2012)

    Article  MathSciNet  Google Scholar 

  24. A. Paliathanasis, Quantum potentiality in inhomogeneous cosmology. Universe 7, 52 (2021). https://doi.org/10.3390/universe7030052

    Article  ADS  Google Scholar 

  25. A. Zampeli, A. Paliathanasis, Quantization of inhomogeneous spacetimes with cosmological constant term. Class. Quantum Grav. 38, 165012 (2021). https://doi.org/10.1088/1361-6382/ac1209

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. J. Libre, C. Valls, On the dynamics of the Szekeres system. Phys. Lett. A 383, 301 (2019). https://doi.org/10.1016/j.physleta.2018.10.050

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. J. Libre, C. Valls, Dynamics of the Szekeres system. J. Math. Phys. 62, 082502 (2021). https://doi.org/10.1063/5.0054051

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. E.J. Copeland, A.R. Liddle, D. Wands, Exponential potentials and cosmological scaling solutions. Phys. Rev. D 57, 4686 (1998). https://doi.org/10.1103/PhysRevD.57.4686

    Article  ADS  Google Scholar 

  29. A.A. Coley, R.J. van den Hoogen, The dynamics of multiscalar field cosmological models and assisted inflation. Phys. Rev. D (2000). https://doi.org/10.1103/PhysRevD.62.023517

    Article  Google Scholar 

  30. A.P. Billyard, A.A. Coley, J.E. Lidsey, U.S. Nilsson, Dynamics of M theory cosmology. Phys. Rev. D 61, 043504 (2000). https://doi.org/10.1103/PhysRevD.61.043504

    Article  ADS  MathSciNet  Google Scholar 

  31. A.A. Coley, Dynamical systems and cosmology. Astroph. Space Sci. Libr. (2003). https://doi.org/10.1007/978-94-017-0327-7

    Article  MATH  Google Scholar 

  32. G. Leon, E.N. Saridakis, Dynamical analysis of generalized Galileon cosmology. JCAP 03, 025 (2013). https://doi.org/10.1088/1475-7516/2013/03/025

    Article  ADS  MathSciNet  Google Scholar 

  33. G.A. Rave-Franco, C. Escamilla-Rivera, J.L. Said, Dynamical complexity of the teleparallel gravity cosmology. Phys. Rev. D 103, 084017 (2021). https://doi.org/10.1103/PhysRevD.103.084017

    Article  ADS  MathSciNet  Google Scholar 

  34. R.G. Landim, Cosmological perturbations and dynamical analysis for interacting quintessence. EPJC 79, 889 (2019). https://doi.org/10.1140/epjc/s10052-019-7418-8

    Article  ADS  Google Scholar 

  35. M. Karčiauskas, Dynamical Analysis of Anisotropic Inflation. Mod. Phys. Lett. A 31, 1640002 (2016). https://doi.org/10.1142/S0217732316400022

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. G. Leon, E.N. Saridakis, Dynamical behavior in mimetic F(R) gravity. JCAP 04, 031 (2015). https://doi.org/10.1088/1475-7516/2015/04/031

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Suroso, F.P. Zen, Cosmological model with nonminimal derivative coupling of scalar fields in five dimensions. Gen. Rel. Gravit. 45, 799 (2013). https://doi.org/10.1007/s10714-013-1500-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. A. Paliathanasis, G. Leon, Asymptotic behavior of N-fields Chiral Cosmology. EPJC 80, 847 (2020). https://doi.org/10.1140/epjc/s10052-020-8423-7

    Article  ADS  Google Scholar 

  39. A. Giacomini, S. Jamal, G. Leon, A. Paliathanasis, J. Saavedra, Phys. Rev. D 95, 124060 (2017). https://doi.org/10.1103/PhysRevD.95.064031

    Article  ADS  MathSciNet  Google Scholar 

  40. B. Aulbach, Continuous and Discrete Dynamics near Manifolds of Equilibria. Lecture Notes in Mathematics No. 1058, Springer (1984)

  41. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, vol. 42 (Springer, Berlin, New York, 1997). 978-0-387-90819-9, corrected fifth printing

  42. G. Iooss, M. Adelmeyer, Topics in Bifurcation Theory. p. 7 (1992)

  43. J. Llibre, C. Valls, Phys. Dark Univ. 35, 100954 (2022). https://doi.org/10.1016/j.dark.2022.100954

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Agencia Nacional de Investigación y Desarrollo—ANID through the program FONDECYT Iniciación grant no. 11180126 and by Vicerrectoría de Investigación y Desarrollo Tecnológico at Universidad Católica del Norte. Ellen de Los Milagros Fernández Flores is acknowledged for proofreading this manuscript and for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genly Leon.

Appendix A: Szekeres system with \(\Lambda =0\)

Appendix A: Szekeres system with \(\Lambda =0\)

Fig. 20
figure 20

Phase-space portraits for Szekeres associated to system (A1), (A2) for different values of the free parameters \(I_{0}\) and h and zero value for the cosmological constant, i.e. \(\Lambda =0\). Figures of the first row are in the local variables \(\left( x,y\right) \), while figures of the second row are for the compactified variables \(\left( X,Y\right) \)

In this “Appendix” we discuss about the global dynamics for Szekeres system with \(\Lambda =0\). Such analysis has been published before for other set of variables in [26]. However, for the completeness of our analysis we summarize the main results in the following lines. The dynamical system (57), (58) for \(\Lambda =0\) reads

$$\begin{aligned} {\dot{x}}&=-\sqrt{3}y\left( 3I_{0}y+6\right) , \end{aligned}$$
(A1)
$$\begin{aligned} {\dot{y}}&=-\sqrt{3}\left( x\left( y^{3}-3\right) +3hy^{2}\right) . \end{aligned}$$
(A2)

The latter dynamical system in the finite regime admits the stationary points \(P_{0}^{\left( \Lambda =0\right) }=\left( 0,0\right) \) and \(P_{1}^{\left( \Lambda =0\right) }=\left( \frac{4h}{I_{0}^{2}},-\frac{2}{I_{0}}\right) \) which exist for \(I_{0}\ne 0\) and it is physically accepted when \(I_{0}<0,\) because \(y\ge 0.\) The eigenvalues of the linearized system around point \(P_{0}^{\left( \Lambda =0\right) }\) are \(-6\sqrt{3}\) and \(3\sqrt{3}\), which means that the point is saddle. Similarly, for point \(P_{1}^{\left( \Lambda =0\right) }\) we derive the eigenvalues \(6\sqrt{3}\) and \(3\sqrt{3}\) which means that \(P_{1}^{\left( \Lambda =0\right) }\) is a source. Thus, do not exists stationary point at the finite regime. As far as the analysis at infinity is concerned, we can easily conclude from the results of Sect. 4 that results for \(\Lambda <0\) and \(I_{0}<0\) apply also when \(\Lambda =0\) and \(I_{0}<0\). Therefore, the trajectories can end at infinity, while they are originated at infinity or the source point \(P_{1}^{\left( \Lambda =0\right) }\).

In Fig. 20 phase-space portraits for the Szekeres system with zero cosmological constant terms for different values of the free variables are presented. We observe that the trajectories of the dynamical systems end at infinity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paliathanasis, A., Leon, G. Global dynamics and evolution for the Szekeres system with nonzero cosmological constant term. Eur. Phys. J. Plus 137, 366 (2022). https://doi.org/10.1140/epjp/s13360-022-02542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02542-9

Navigation