Skip to main content
Log in

Enhancing the precision of two- and three-dimensional atom localization in an inverted-Y scheme with multiple excited levels

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A six-level inverted-Y scheme is proposed for elucidating the effect of hyperfine levels on the behavior of the two-dimensional (2D) and three-dimensional (3D) atom localization. An analytical model based on density matrix technique demonstrates that the information about atom’s position can be readily extracted by measuring the spatial optical absorption. We find that the presence of several excited states in inverted-Y interaction considerably alters the localization profiles as compared to the four-level approximation. Under suitable parametric conditions, we attain nearly 100 \(\%\) probability of detecting atom at particular position in 2D and 3D subspaces. Such efficient and high precision 2D and 3D atom localization may have potential applications in laser cooling and atom nanolithography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Heisenberg, Zeitschrift für Phys. 43(3–4), 172 (1927). https://doi.org/10.1007/BF01397280

    Article  ADS  Google Scholar 

  2. Rayleigh, London, Edinburgh, Dublin Philos. Mag. J. Sci. 42(255), 167 (1896). https://doi.org/10.1080/14786449608620902. https://www.tandfonline.com/doi/full/10.1080/14786449608620902

  3. M. Born, E. Wolf, A.B. Bhatia, P.C. Clemmow, D. Gabor, A.R. Stokes, A.M. Taylor, P.A. Wayman, W.L. Wilcock, Principles of Optics (Cambridge University Press, 1999). https://doi.org/10.1017/CBO9781139644181. https://www.cambridge.org/core/product/identifier/9781139644181/type/book

  4. J.M. Vigoureux, D. Courjon, Appl. Opt. 31(16), 3170 (1992). https://doi.org/10.1364/ao.31.003170

    Article  ADS  Google Scholar 

  5. J.E. Thomas, Phys. Rev. A 42(9), 5652 (1990). https://doi.org/10.1103/PhysRevA.42.5652. https://link.aps.org/doi/10.1103/PhysRevA.42.5652

  6. P. Storey, M. Collett, D. Walls, Phys. Rev. Lett. 68(4), 472 (1992). https://doi.org/10.1103/PhysRevLett.68.472. https://link.aps.org/doi/10.1103/PhysRevLett.68.472

  7. S. Kunze, G. Rempe, M. Wilkens, Europhys. Lett. 27(2), 115 (1994). https://doi.org/10.1209/0295-5075/27/2/007. https://iopscience.iop.org/article/10.1209/0295-5075/27/2/007

  8. S. Kunze, K. Dieckmann, G. Rempe, Phys. Rev. Lett. 78(11), 2038 (1997). https://doi.org/10.1103/PhysRevLett.78.2038. https://link.aps.org/doi/10.1103/PhysRevLett.78.2038

  9. K. Johnson, J. Thywissen, N. Dekker, K. Berggren, A. Chu, R. Younkin, M. Prentiss, Science 280(5369), 1583–1586 (1998). https://doi.org/10.1126/science.280.5369.1583

  10. A.V. Gorshkov, L. Jiang, M. Greiner, P. Zoller, M.D. Lukin, Phys. Rev. Lett. 100(9), 093005 (2008). https://doi.org/10.1103/PhysRevLett.100.093005. https://link.aps.org/doi/10.1103/PhysRevLett.100.093005

  11. G.P. Collins, Phys. Today 49(3), 18 (1996). https://doi.org/10.1063/1.2807533. http://physicstoday.scitation.org/doi/10.1063/1.2807533

  12. Y. Wu, X. Yang, C. Sun, Phys. Rev. A 62(6), 063603 (2000). https://doi.org/10.1103/PhysRevA.62.063603. https://link.aps.org/doi/10.1103/PhysRevA.62.063603

  13. K.T. Kapale, S. Qamar, M.S. Zubairy, Phys. Rev. A 67(2), 023805 (2003). https://doi.org/10.1103/PhysRevA.67.023805. https://link.aps.org/doi/10.1103/PhysRevA.67.023805

  14. J. Evers, S. Qamar, M.S. Zubairy, Phys. Rev. A 75(5), 053809 (2007). https://doi.org/10.1103/PhysRevA.75.053809. https://link.aps.org/doi/10.1103/PhysRevA.75.053809

  15. W.D. Phillips, Rev. Mod. Phys. 70(3), 721 (1998). https://doi.org/10.1103/RevModPhys.70.721. https://link.aps.org/doi/10.1103/RevModPhys.70.721

  16. A.M. Herkommer, W.P. Schleich, M.S. Zubairy, J. Mod. Opt. 44(11-12), 2507 (1997). https://doi.org/10.1080/09500349708231897. http://www.tandfonline.com/doi/abs/10.1080/09500349708231897

  17. S. Qamar, S.Y. Zhu, M.S. Zubairy, Opt. Commun. 176, 409 (2000). https://doi.org/10.1016/S0030-4018(00)00535-6

    Article  ADS  Google Scholar 

  18. E. Paspalakis, P.L. Knight, Phys. Rev. A 63(6), 065802 (2001). https://doi.org/10.1103/PhysRevA.63.065802. https://link.aps.org/doi/10.1103/PhysRevA.63.065802

  19. G.S. Agarwal, K.T. Kapale, J. Phys. B At. Mol. Opt. Phys. 39(17), 3437 (2006). https://doi.org/10.1088/0953-4075/39/17/002. https://iopscience.iop.org/article/10.1088/0953-4075/39/17/002

  20. F. Ghafoor, S. Qamar, M.S. Zubairy, Phys. Rev. A 65(4), 043819 (2002). https://doi.org/10.1103/PhysRevA.65.043819. https://link.aps.org/doi/10.1103/PhysRevA.65.043819

  21. J. Xu, X.m. Hu, Phys. Rev. A 76(1), 013830 (2007). https://doi.org/10.1103/PhysRevA.76.013830. https://link.aps.org/doi/10.1103/PhysRevA.76.013830

  22. S. Qamar, A. Mehmood, S. Qamar, Phys. Rev. A 79(3), 033848 (2009). https://doi.org/10.1103/PhysRevA.79.033848. https://link.aps.org/doi/10.1103/PhysRevA.79.033848

  23. C. Liu, S. Gong, D. Cheng, X. Fan, Z. Xu, Phys. Rev. A 73(2), 025801 (2006). https://doi.org/10.1103/PhysRevA.73.025801. https://link.aps.org/doi/10.1103/PhysRevA.73.025801

  24. N.A. Proite, Z.J. Simmons, D.D. Yavuz, Phys. Rev. A 83(4), 041803 (2011). https://doi.org/10.1103/PhysRevA.83.041803. https://link.aps.org/doi/10.1103/PhysRevA.83.041803

  25. S. Qamar, S.Y. Zhu, M.S. Zubairy, Phys. Rev. A 61(6), 063806 (2000). https://doi.org/10.1103/PhysRevA.61.063806. https://link.aps.org/doi/10.1103/PhysRevA.61.063806

  26. Z. Zhu, W.X. Yang, X.T. Xie, S. Liu, S. Liu, R.K. Lee, Phys. Rev. A 94(1), 013826 (2016). https://doi.org/10.1103/PhysRevA.94.013826. https://link.aps.org/doi/10.1103/PhysRevA.94.013826

  27. V. Ivanov, Y. Rozhdestvensky, Phys. Rev. A 81(3), 033809 (2010). https://doi.org/10.1103/PhysRevA.81.033809. https://link.aps.org/doi/10.1103/PhysRevA.81.033809

  28. R.G. Wan, J. Kou, L. Jiang, Y. Jiang, J.Y. Gao, J. Opt. Soc. Am. B 28(1), 10 (2011). https://doi.org/10.1364/JOSAB.28.000010. https://www.osapublishing.org/abstract.cfm?URI=josab-28-1-10

  29. R.G. Wan, J. Kou, L. Jiang, Y. Jiang, J.Y. Gao, Opt. Commun. 284(4), 985 (2011). https://doi.org/10.1016/j.optcom.2010.10.066

    Article  ADS  Google Scholar 

  30. R.G. Wan, J. Kou, L. Jiang, Y. Jiang, J.Y. Gao, J. Opt. Soc. Am. B 28(4), 622 (2011). https://doi.org/10.1364/JOSAB.28.000622. https://www.osapublishing.org/abstract.cfm?URI=josab-28-4-622

  31. C. Ding, J. Li, X. Yang, D. Zhang, H. Xiong, Phys. Rev. A 84(4), 043840 (2011). https://doi.org/10.1103/PhysRevA.84.043840. https://link.aps.org/doi/10.1103/PhysRevA.84.043840

  32. C. Ding, J. Li, R. Yu, X. Hao, Y. Wu, Opt. Express 20(7), 7870 (2012). https://doi.org/10.1364/OE.20.007870. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-7-7870

  33. A. Raheli, H.R. Hamedi, M. Sahrai, Laser Phys. 25(9), 095202 (2015). https://doi.org/10.1088/1054-660X/25/9/095202. https://iopscience.iop.org/article/10.1088/1054-660X/25/9/095202

  34. Z. Zhu, W.X. Yang, A.X. Chen, S. Liu, R.K. Lee, J. Opt. Soc. Am. B 32(6), 1070 (2015). https://doi.org/10.1364/JOSAB.32.001070. https://www.osapublishing.org/abstract.cfm?URI=josab-32-6-1070

  35. H.R. Hamedi, G. Juzeliūnas, Phys. Rev. A 94(1), 013842 (2016). https://doi.org/10.1103/PhysRevA.94.013842. https://link.aps.org/doi/10.1103/PhysRevA.94.013842

  36. N. Singh, A. Wasan, J. Opt. Soc. Am. B 35(6), 1318 (2018). https://doi.org/10.1364/JOSAB.35.001318. https://www.osapublishing.org/abstract.cfm?URI=josab-35-6-1318

  37. J.C. Wu, B.Q. Ai, EPL (Europhysics Lett. 107(1), 14002 (2014). https://doi.org/10.1209/0295-5075/107/14002. https://iopscience.iop.org/article/10.1209/0295-5075/107/14002

  38. N. Singh, R. Kumar, A. Wasan, OSA Contin. 2(3), 862 (2019). https://doi.org/10.1364/OSAC.2.000862. https://www.osapublishing.org/abstract.cfm?URI=osac-2-3-862

  39. Y. Qi, F. Zhou, T. Huang, Y. Niu, S. Gong, J. Mod. Opt. 59(12), 1092 (2012). https://doi.org/10.1080/09500340.2012.697203. http://www.tandfonline.com/doi/abs/10.1080/09500340.2012.697203

  40. V.S. Ivanov, Y.V. Rozhdestvensky, K.A. Suominen, Phys. Rev. A 90(6), 063802 (2014). https://doi.org/10.1103/PhysRevA.90.063802. https://link.aps.org/doi/10.1103/PhysRevA.90.063802

  41. Z. Wang, B. Yu, J. Opt. Soc. Am. B 32(7), 1281 (2015). https://doi.org/10.1364/josab.32.001281

    Article  ADS  Google Scholar 

  42. Z. Wang, D. Cao, B. Yu, Appl. Opt. 55(13), 3582 (2016). https://doi.org/10.1364/ao.55.003582

    Article  ADS  Google Scholar 

  43. D. Zhang, R. Yu, Z. Sun, C. Ding, M.S. Zubairy, J. Phys. B At. Mol. Opt. Phys. 52(3), 035502 (2019). https://doi.org/10.1088/1361-6455/aaf5ec. https://iopscience.iop.org/article/10.1088/1361-6455/aaf5ec

  44. K.T. Kapale, in Progress in Optics 58, 199–250 (2013). https://doi.org/10.1016/B978-0-444-62644-8.00004-2

  45. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511976667. http://ebooks.cambridge.org/ref/id/CBO9780511976667

  46. A. Kaur, N. Singh, P. Kaur, Eur. Phys. J. D 72(6), 109 (2018). https://doi.org/10.1140/epjd/e2018-90172-1

    Article  ADS  Google Scholar 

  47. L. van Doai, N. Le Thuy An, D Xuan Khoa, V.N. Sau, N Huy Bang, J. Opt. Soc. Am. B 36(10), 2856 (2019). https://doi.org/10.1364/josab.36.002856

    Article  ADS  Google Scholar 

  48. L.V. Doai, Phys. Scr. 95(3) (2020). https://doi.org/10.1088/1402-4896/ab5288

  49. H.J. Metcalf, P. van der Stratten, Laser Cooling and Trapping, vol. 13 (Springer, Berlin, 1999). https://doi.org/10.1007/978-1-4612-1470-0. https://books.google.ie/books?id=jzbY4NisxckC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

  50. P. Meystre, M. Sargent, Elem. Quantum Optics (2007). https://doi.org/10.1007/978-3-540-74211-1

    Article  ADS  Google Scholar 

  51. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997). https://doi.org/10.1017/cbo9780511813993

    Book  Google Scholar 

  52. A. Kaur, P. Kaur, Phys. Scr. 93(11), 115101 (2018). https://doi.org/10.1088/1402-4896/aadec9. http://stacks.iop.org/1402-4896/93/i=11/a=115101?key=crossref.2a809d72ea702d1e6f4a8890dba3da8a

  53. H.R. Noh, H.S. Moon, Opt. Express 19(12), 11128 (2011). https://doi.org/10.1364/OE.19.011128. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-19-12-11128

  54. O.S. Mishina, M. Scherman, P. Lombardi, J. Ortalo, D. Felinto, A.S. Sheremet, A. Bramati, D.V. Kupriyanov, J. Laurat, E. Giacobino, Phys. Rev. A 83(5), 053809 (2011). https://doi.org/10.1103/PhysRevA.83.053809. https://link.aps.org/doi/10.1103/PhysRevA.83.053809

  55. R.G. Wan, J. Kou, L. Jiang, Y. Jiang, J.Y. Gao, Opt. Commun. 284(4), 985 (2011)

    Article  ADS  Google Scholar 

  56. L. Jin, H. Sun, Y. Niu, S. Jin, S. Gong, J. Mod. Opt. 56(6), 805 (2009)

    Article  ADS  Google Scholar 

  57. Z. Zhu, W.X. Yang, A.X. Chen, S. Liu, R.K. Lee, Laser Phys. 26(7) (2016). https://doi.org/10.1088/1054-660X/26/7/075203

  58. Rahmatullah, Ziauddin, Y.L. Chuang, R.K. Lee, S. Qamar (2018) JOSA B 35(10): 2588

Download references

Acknowledgements

Amanjot Kaur gratefully acknowledges Department of Science and Technology (DST), India, for providing the INSPIRE fellowship (Grant no:IF170618). Zubair Iqbal Dar and Paramjit Kaur acknowledge financial support by Science and Engineering Research Board (SERB) India (Grant no: EEQ/2018/000018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit Kaur.

Ethics declarations

Conflict of interest

The authors confirm that there have been no competing financial interests or personal relationships that might raise the question of bias in the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Dar, Z.I. & Kaur, P. Enhancing the precision of two- and three-dimensional atom localization in an inverted-Y scheme with multiple excited levels. Eur. Phys. J. Plus 137, 266 (2022). https://doi.org/10.1140/epjp/s13360-022-02487-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02487-z

Navigation