Skip to main content
Log in

Effect of wind load on combined arches in dome buildings

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present research, effect of wind load on double-arched domes with different heights of arches are examined. To this end, double-arched domes with fixed height-to-span proportions in Type C ground are numerically simulated and the amounts of Pressure Coefficient (Cp) at the central line parallel to the wind direction, and also on the rings around the domes with different heights are analyzed. Numerical results are verified with the experimental data. Results showed the effect of different variables as height of arches, failure to the junction of two arches and the connection area of two arches on Cp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

C p :

Pressure Coefficient

C µ :

Coefficient of ground type

E :

Modulus of elasticity

E K :

Kinetic energy

g i :

Gravitational acceleration components;

G :

Shear modulus

I :

Intensity of turbulence

K :

Thermal conductivity

l:

Hydraulic diameter

P :

Flow Pressure

Re:

Reynolds number

R i :

Distributed resistance components

T i :

Viscous loss terms components

T 0 :

Total temperature

U avg :

Average ratio of speed to velocity

W v :

Viscous loss term

ρ:

Density

σ:

Stress

ε:

Strain

φ:

Viscous heat generation

V i :

Velocity Cartesian component in i direction

τ ij :

Stress tensor

u i :

Orthogonal velocities

µ:

Dynamics viscosity

µe :

Effective viscosity

λ:

Second coefficient of viscosity

ΔP :

Pressure difference

References

  1. T. Mahdi, Performance of traditional arches, vaults and domes in the 2003 BAM earthquake. Asian J. Civil Eng. 5(3–4), 209–221 (2004)

    Google Scholar 

  2. F.J. Maher, Wind loads on basic dome shapes. J. Struct. Div. ASCE ST 3, 219–228 (1965)

    Article  Google Scholar 

  3. P.A. Blackmore, E. Tasokri, Wind loads on curved roofs. Wind Eng. Ind. Aerodyn. 94, 126 (2006)

    Article  Google Scholar 

  4. R.N. Meroney, C.W. Letchford, P.P. Sarkar, Comparison of numerical and wind tunnel simulation of wind loads on smooth, rough and dual domes immersed in a boundary layer. Wind Struct. 5(2–4), 347–358 (2002)

    Article  Google Scholar 

  5. T.J. Taylor, Wind pressures on a hemispherical dome. J. Wind Eng. Ind. Aerodynam. 40(2), 199–213 (1991)

    Article  Google Scholar 

  6. Q.S. Sinan, M.S. Aldlemy, M.R. Rasani, A.K. Ariffin, S. Yusoff, Y.T.M. Tuan, N. Al-Ansari, Y.Z. Mundher, K.W. Chau, Thin and sharp edges bodies-fluid interaction simulation using cut-cell immersed boundary method. Eng. Appl. Comput. Fluid Mech. 13(1), 860–877 (2019)

    Google Scholar 

  7. M. Ghalandari, S. Shamshirband, A. Mosavi, K.W. Chau, Flutter speed estimation using presented differential quadrature method formulation. Eng. Appl. Comput. Fluid Mech. 13(1), 804–810 (2019)

    Google Scholar 

  8. M. Farzaneh-Gord, M. Faramarzi, M.H. Ahmadi, M. Sadi, S. Shamshirband, A. Mosavi, K.W. Chau, Numerical simulation of pressure pulsation effects of a snubber in a CNG station for increasing measurement accuracy. Eng. Appl. Comput. Fluid Mech. 13(1), 642–663 (2019)

    Google Scholar 

  9. W. Chen, Z. Zhu, Numerical simulation of wind turbulence by DSRFG and identification of the aerodynamic admittance of bridge decks. Eng. Appl. Comput. Fluid Mech. 14(1), 1515–1535 (2020)

    Google Scholar 

  10. X. Sun, W. Li, Q. Huang, J. Zhang, C. Sun, Large eddy simulations of wind loads on an external floating-roof tank. Eng. Appl. Comput. Fluid Mech. 14(1), 422–435 (2020)

    Google Scholar 

  11. B. Mou, B. He, D. Zhao, K.W. Chau, Numerical simulation of the effects of building dimensional variation on wind pressure distribution. Eng. Appl. Comput. Fluid Mech. 11(1), 293–309 (2017)

    Google Scholar 

  12. J.S. Lin, C.H. Chang, N.C. Shang, Computational simulation and comparison of the effect of different surroundings on Wind loads on domed structures. J. Wind Eng. 9(3), 1009 (2006)

    Google Scholar 

  13. S. Khosrowjerdi, H. Sarkardeh, Effect of arch height on wind load of shape dome structure. Amirkabir J. Civil Eng. 53(2), 1–15 (2019). ((in Persian))

    Google Scholar 

  14. S. Khosrowjerdi, H. Sarkardeh, M. Kioumarsi, Effect of wind load on different heritage dome buildings. Eur. Phys. J. Plus 136, 1180 (2021)

    Article  Google Scholar 

  15. I. Vizotto, A.M. Ferreira, Wind force coefficient on hexagonal free form shells. Eng. Struct. 83, 17–29 (2015)

    Article  Google Scholar 

  16. Y. Qiu, Y. Sun, Y. Wu, Y. Tamura, Modelling the mean wind loads on cylindrical roofs with consideration of the Reynolds number effect in uniform flow with low turbulence. Wind Eng. Ind. Aerodyn. 129, 11–21 (2014)

    Article  Google Scholar 

  17. D.L. Kateris, V.P. Fragos, T.A. Kotsopoulos, A.G. Martzopoulou, D. Moshou, Calculated external Cp on livestock buildings and comparison with Eurocode 1. Wind Struct. 15(6), 481–494 (2012)

    Article  Google Scholar 

  18. I.M.C. Campbell, A comparison of downwind sail coefficients from tests in different wind tunnels. Ocean Eng. 90, 62–71 (2014)

    Article  Google Scholar 

  19. L. Zhao, X. Chen, Y. Ge, Investigations of adverse wind loads on a large cooling tower for the six-tower combination. Appl. Therm Eng. 105, 988–999 (2016)

    Article  Google Scholar 

  20. L. Zhao, Y.Y. Zhan, Y.W. Liang, J.X. Cao, Y.J. Ge, Comparison of wind-induced interference criteria and effects under typical towers-group arrangements. in: Proceedings of the IASS annual symposium, spatial structures in the 21st century, Tokyo, Japan (2016)

  21. K. Kwon, D. Kim, T. Ha, I. Lee, Evaluation of wind Cp of single span greenhouses built on reclaimed coastal land using a large-sized wind tunnel. Bio. Syst. Eng. 141, 58–81 (2016)

    Google Scholar 

  22. J.Y. Fu, Q.S. Li, Wind effect on the world’s longest spatial lattice structures loading characteristics and numerical prediction. J. Construct. Steel Res. 63(10), 1341–1350 (2007)

    Article  Google Scholar 

  23. I. Lee, T. Short, Two-dimensional numerical simulation of natural ventilation in a multi-span greenhouse. Trans. ASAE 43(3), 745–753 (2000)

    Article  Google Scholar 

  24. B. Launder, D. Spalding, The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)

    Article  ADS  Google Scholar 

  25. R. Kim, I. Lee, K. Kwon, Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 1: Development of the CFD model. Biosystems eng. 164, 235–256 (2017)

    Article  Google Scholar 

  26. O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method (Butterworth Heinemann, Bristol, 2000)

    MATH  Google Scholar 

  27. C.W. Letchford, P.P. Sarkar, Mean and fluctuating wind loads on rough and smooth parabolic domes. J. Wind Eng. Ind. Aerodyn. 188, 101–117 (2000)

    Article  Google Scholar 

  28. ASCE 7-98, ASCE Minimum Design Loads for Buildings and Other Structures, SEI, Reston, VA (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Sarkardeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosrowjerdi, S., Sarkardeh, H. Effect of wind load on combined arches in dome buildings. Eur. Phys. J. Plus 137, 227 (2022). https://doi.org/10.1140/epjp/s13360-022-02438-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02438-8

Keywords

Navigation