Skip to main content
Log in

Modeling of pulsatile EMHD flow of non-Newtonian blood with magnetic particles in a tapered stenosed tube: a comparative study of actual and approximated drag force

EMHD flow of Bingham fluid

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In recent years, theories of nanoparticles extensively feature in discussions of diagnostic and treatment of cardio-vascular diseases in the medical field. This paper proposes a mathematical model for the pulsatile flow of Bingham fluid blood with magnetic particles through a diseased artery. It is assumed that the artery has a porous medium and is tapered with mild stenosis. Further, it is subjected to an external body acceleration and an applied electromagnetic field. Instead of considering an approximate interaction force between the suspended particle and the fluid, the actual interaction force between them is considered in the current study. By introducing the term actual drag force in the momentum equation, flow governing equations are derived and solved using integral transform method. The impact of various pertinent parameters such as the yield stress, radius of the particle, particle concentration number, mass number, electric field intensity, magnetic field strength, stenosis geometry, and body acceleration number on the flow characteristics is analyzed through numerical calculations and graphs. The radius of the particle increases the speed of both fluid and particle. Both particle concentration and mass number increase the shear stress at the arterial wall. On the other hand, the electric width number and the permeability number considerably decrease its value. The body acceleration number increases the flow resistance for the fixed pressure gradient, and it is more in the diverging tube than the converging and non-tapering section of the tube. A comparative study of the flow variables with actual drag force and approximate drag force is examined along with the effects of actual interaction force in order to understand its remarkable influence on the magnitude of flow velocity, wall shear stress and flow resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Data Availability Statement

All the data used for the numerical simulations and comparison purpose have been calculated through MATLAB software and visualized in the graphical illustrations and nothing is left.

References

  1. J. Jang, S.S. Lee, Sens. Actuat. A Phys. 80, 84–89 (2000)

    Article  Google Scholar 

  2. M. Rashid, S. Nadeem, Can. J. Phys. 97, 701–720 (2019)

    Article  ADS  Google Scholar 

  3. M. Rashid, I. Shahzadi, S. Nadeem, Phys. A 551, 124089 (2020)

    Article  MathSciNet  Google Scholar 

  4. S.I. Abdelsalam, K.S. Mekheimer, A. Zaher, Chin. J. Phys. 67, 314–329 (2020)

    Article  Google Scholar 

  5. N.P. Ratchagar, R. VijayaKumar, Advanced in Fluid Dynamics (Springer, New York, 2021), pp. 701–721

    Book  Google Scholar 

  6. R. Ponalagusamy, R. Manchi, Math. Eng. Sci. Aerosp. (MESA) 11, 237–254 (2020)

    Google Scholar 

  7. G.C. Shit, N.K. Ranjit, A. Sinha, J. Bionic Eng. 13, 436–448 (2016)

    Article  Google Scholar 

  8. I.A. Mirza, M. Abdulhameed, D. Vieru, S. Shafie, Comput. Methods Prog. Biomed. 137, 149–166 (2016)

    Article  Google Scholar 

  9. M. Abdulhameed, D. Vieru, R. Roslan, Phys. A Stat. Mech. Appl. 484, 233–252 (2017)

    Article  Google Scholar 

  10. M.M. Muhammad, M. Abdulhameed, T. Khan, Mech. Time Depend. Mater. 23, 407–425 (2019)

    Article  ADS  Google Scholar 

  11. N.P. Gopalan, R. Ponnalagarsamy, Int. J. Eng. Sci. 30, 631–644 (1992)

    Article  Google Scholar 

  12. S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (Argonne National Lab, New York, 1995)

    Google Scholar 

  13. M.K. Manshadi, M. Saadat, M. Mohammadi, M. Shamsi, M. Dejam, R. Kamali, A. Sanati-Nezhad, Drug Deliv. 25, 1963–1973 (2018)

    Article  Google Scholar 

  14. M. Texon, A.M.A. Arch. Intern. Med. 99, 418–427 (1957)

    Article  Google Scholar 

  15. A.G. May, J.A. Deweese, C.G. Rob, Surgery 53, 513–524 (1953)

    Google Scholar 

  16. D. Young, J. Eng. Ind. Trans. ASME 90, 248–254 (1968)

    Article  Google Scholar 

  17. J.H. Forrester, D.F. Young, J. Biomech. 3, 297–305 (1970)

    Article  Google Scholar 

  18. D.F. Young, F.Y. Tsai, J. Biomech. 6, 395–410 (1973)

    Article  Google Scholar 

  19. J.R. Womersley, J. Physiol. 127, 553–563 (1955)

    Article  Google Scholar 

  20. P.W. Duck, Quart. J. Mech. Appl. Math. 33, 77–92 (1980)

    Article  MathSciNet  Google Scholar 

  21. C. Tu, M. Deville, L. Dheur, L. Vanderschuren, J. Biomech. 25, 1141–1152 (1992)

    Article  Google Scholar 

  22. D.C. Sanyal, N.K. Maji, Indian J. Pure Appl. Math. 30, 951–959 (1999)

    Google Scholar 

  23. K. Venkateswarlu, J.A. Rao, NISCAIR Online Periodicals Repositary. IJBB 41, 241–245 (2004)

    Google Scholar 

  24. N. Casson, Rheology of disperse systems (1959)

  25. P. Chathurani, R. Ponalagusamy, Biorheology 22, 521–531 (1985)

    Article  Google Scholar 

  26. J.C. Misra, M.K. Patra, S.C. Misra, J. Biomech. 26, 1129–1141 (1993)

    Article  Google Scholar 

  27. S. Nadeem, N.S. Akbar, A.A. Hendi, T. Hayat, Appl. Math. Comput. 217, 7108–7116 (2011)

    MathSciNet  Google Scholar 

  28. N.S. Akbar, Ain Shams Eng. J. 5, 1267–1275 (2014)

    Article  Google Scholar 

  29. P. Chaturani, R. Ponalagusamy, Biorheology 23, 499–511 (1986)

    Article  Google Scholar 

  30. C. Tu and M. Deville, J. Biomech. 29(7), 899-908

  31. R. Ponalagusamy, R. Tamil Selvi, A.K. Banerjee, J. Franklin Inst. 349, 1681–1698 (2012)

    Article  MathSciNet  Google Scholar 

  32. Y.K. Ha, H. Hong, E. Yeom, J.M. Song, J. Visual. 23, 61–70 (2020)

    Article  Google Scholar 

  33. K. Haldar, S.N. Ghosh, Indian J. Pure Appl. Math. 25, 345–352 (1994)

    Google Scholar 

  34. M.A. Ikbal, S. Chakravarty, K.K. Wong, J. Mazumdar, P.K. Mandal, J. Comput. Appl. Math. 230, 243–259 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. D.S. Sankar, U. Lee, J. Mech. Sci. Technol. 25, 2573–2581 (2011)

    Article  Google Scholar 

  36. R. Ponalagusamy, R.T. Selvi, Meccanica 48, 2427–2438 (2013)

    Article  MathSciNet  Google Scholar 

  37. M.R. Sadeghi, M. Jahangiri, M. Saghafian, J. Braz. Soc. Mech. Sci. Eng. 42, 1–15 (2020)

    Article  Google Scholar 

  38. P. Chaturani, V. Palanisamy, Int. J. Eng. Sci. 29, 113–121 (1991)

    Article  Google Scholar 

  39. S.N. Majhi, V.R. Nair, Int. J. Eng. Sci. 32, 839–846 (1994)

    Article  Google Scholar 

  40. E.F. El-Shehawey, E.M. Elbarbary, N.A.S. Afifi, M. Elshahed, Int. J. Math. Math. Sci. 23, 795–799 (2000)

    Article  MathSciNet  Google Scholar 

  41. R.K. Dash, K.N. Mehta, G. Jayaraman, Int. J. Eng. Sci. 34, 1145–1156 (1996)

    Article  Google Scholar 

  42. M.K. Sharma, K. Bansal, S. Bansal, Korea Aust. Rheol. J. 24, 181–189 (2012)

    Article  Google Scholar 

  43. A. Zaman, N. Ali, M. Sajid, Math. Comput. Simul. 134, 1–16 (2017)

    Article  Google Scholar 

  44. I.M. Eldesoky, Int. J. Math. Math. Sci. (2012)

  45. M.M. Bhatti, M.A. Abbas, Alex. Eng. J. 55, 1017–1023 (2016)

    Article  Google Scholar 

  46. S. Nadeem, S. Ijaz, Phys. Lett. A 379, 542–554 (2015)

    Article  Google Scholar 

  47. R. Ponalagusamy, Korea Aust. Rheol. J. 28, 217 (2016)

    Article  Google Scholar 

  48. N.S. Akbar, J. Comput. Theor. Nanosci. 11, 1411–1416 (2014)

    Article  Google Scholar 

  49. F. Hussain, R. Ellahi, A. Zeeshan, Appl. Sci. 8, 275 (2018)

    Article  Google Scholar 

  50. E.S. Ghasemi, M. Hatami, A.K. Sarokolaie, D.D. Ganji, Phys. E Low Dimens. Syst. Nanostruct. 70, 146–156 (2015)

    Article  ADS  Google Scholar 

  51. E.J. Furlani, E.P. Furlani, J. Magn. Magn. Mater. 312, 187–193 (2007)

    Article  ADS  Google Scholar 

  52. S. Sharma, U. Singh, V.K. Katiyar, J. Magn. Magn. Mater. 377, 395–401 (2015)

    Article  ADS  Google Scholar 

  53. N.S. Akbar, Int. J. Biomath. 9, 1650002 (2016)

    Article  MathSciNet  Google Scholar 

  54. T. Elnaqeeb, N.A. Shah, S.K. Mekheimer, BionanoScience 9, 245–255 (2019)

    Article  Google Scholar 

  55. S. Majee, G.C. Shit, Eur. J. Mech. B/Fluids 83, 42–57 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  56. S. Nadeem, S. Ijaz, N.S. Akbar, Int. Nano Lett. 3, 1–13 (2013)

    Article  Google Scholar 

  57. R. Ellahi, S.U. Rahman, S. Nadeem, Phys. Lett. A 378, 2973–2980 (2014)

    Article  ADS  Google Scholar 

  58. S.U. Rahman, R. Ellahi, S. Nadeem, Q.Z. Zia, J. Mol. Liq. 218, 484–493 (2016)

    Article  Google Scholar 

  59. S.K. Mekheimer, M. Mohamed, T. Elnaqeeb, Int. J. Pure Appl. Math. 107, 201 (2016)

    Article  Google Scholar 

  60. I.A. Mirza, M. Abdulhameed, S. Shafie, Appl. Math. Mech. 38, 379–392 (2017)

    Article  Google Scholar 

  61. A. Zaman, A.A. Khan, N. Ali, J. Braz. Soc. Mech. Sci. Eng. 40, 1–12 (2018)

    Article  Google Scholar 

  62. B. Pincombe, J. Mazumdar, Math. Comput. Model. 25, 57–70 (1997)

    Article  Google Scholar 

  63. S.S. Yadav, K. Kumar, Adv. Appl. Sci. Res. 3, 3551–3557 (2012)

    Google Scholar 

  64. S.U. Siddiqui, S.R. Shah, Appl. Math. Comput. 261, 148–155 (2015)

    MathSciNet  Google Scholar 

  65. R. Ponalagusamy, Corrigendum to AMC 261, 148–55. Appl. Math. Comput. 100(2017), 115–116 (2015)

  66. S. Nanda, B.B. Mallik, S. Das, S.S. Chatterjee, S. Ghosh, S. Bhattacharya, Saudi J. Eng. Technol. 2, 349–357 (2017)

    Google Scholar 

  67. J.C. Misra, S.D. Adhikary, Eng. Sci. Technol. Int. J. 20, 973–981 (2017)

    Google Scholar 

  68. M.A. Deakin, Bull. Math. Biophys. 31, 71–74 (1969)

    Article  Google Scholar 

  69. M. Mustafa, T. Hayat, I. Pop, A. Aziz, Heat Transf. Asian Res. 40, 563–576 (2011)

    Article  Google Scholar 

  70. I. Khan, N.A. Shah, D. Vieru, Eur. Phys. J. Plus 131, 181 (2016)

    Article  Google Scholar 

  71. F. Ali, N.A. Sheikh, I. Khan, M. Saqib, J. Magn. Magn. Mater. 423, 327–336 (2017)

    Article  ADS  Google Scholar 

  72. F. Ali, Farhad, S. Yousaf, I. Khan, N.A. Sheikh, J. Magn. Magn. Mater. 486, 165282 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

EMHD flow of Bingham fluid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponalagusamy, R., Selvi, R.T. & Padma, R. Modeling of pulsatile EMHD flow of non-Newtonian blood with magnetic particles in a tapered stenosed tube: a comparative study of actual and approximated drag force. Eur. Phys. J. Plus 137, 230 (2022). https://doi.org/10.1140/epjp/s13360-022-02434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02434-y

Navigation