Skip to main content
Log in

Ferrofluid lubrication of porous-rough circular squeeze film bearings

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, porous-roughness effects on different circular discs squeeze film bearing designs lubricated with ferrofluid (FF) are studied. Using FF flow model by Rosensweig and continuity equation for the film as well as porous region, modified stochastic Reynolds–Darcy equation is derived for variable magnetic field by considering effects of porosity together with roughness (circumferential and radial) at the lower disc and rotations of both the discs, under the assumption of validity of the Darcy’s law in the porous region. This equation is then applied to predict and compare performances of parallel, exponential, secant and mirror image of secant squeeze film bearing designs for load-carrying capacity \(\overline{W}\). According to results, higher values of circumferential roughness parameter and curvature of the upper discs at the centre in downward direction, and smaller values of radial permeability parameter and lateral surface area of the generated opening cylindrical surface gives better performance of the system. In addition, the performance is more pronounced in the case of exponential squeeze film bearing. The following two empirical relations are also established.

\(\overline{W} \propto Curvature\;of\;the\;upper\;disc\;at\;the\;centre\;in\;downward\;direction,\;\)

\( \overline{W} \propto \frac{1}{{Lateral\;Surface\;Area\;of\;the\;generated\;opening\;cylindrical\;surface}}. \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

a :

Radius of both the circular discs (upper and lower) (m)

c :

Maximum asperity deviation from nominal film height (m)

C :

Dimensionless surface roughness parameter defined in Eq. (40)

E :

Expectancy operator defined in Eq. (35)

E(p):

Mean film pressure (N/m2)

E(W):

Mean load-carrying capacity (N)

F :

Body force

FF:

Ferrofluid

f :

Probability density function

h 0 :

Central film thickness at time t = 0 (m)

h s :

Deviation of film height from nominal level (m)

h n :

Nominal film height (m)

h :

Film thickness (m)

\(\dot{h}_{0}\) :

Normal velocity (or Squeeze velocity), \(\frac{{dh_{0} }}{dt}\;\;(\text{m}/\text{s})\)

H :

Magnetic field vector

H :

Strength of H (A/m)

\(H_{r} ,H_{z}\) :

Components of the applied magnetic field vector H in r and z-directions

H * :

Thickness of the porous matrix (m)

K :

Quantity defined in Eq. (39) (A2/m4)

\(({\text{L.S.A.}})_{e}\) :

Lateral surface area of the generated opening cylindrical surface for exponential squeeze film bearing

\(({\text{L.S.A.}})_{is}\) :

Lateral surface area of the generated opening cylindrical surface for mirror image of secant squeeze film bearing

\(({\text{L.S.A.}})_{p}\) :

Lateral surface area of the generated opening cylindrical surface for parallel squeeze film bearing

\(({\text{L.S.A.}})_{s}\) :

Lateral surface area of the generated opening cylindrical surface for secant squeeze film bearing

M :

Magnetization vector

\(M_{r} ,M_{z}\) :

Components of the magnetization vector M in r and z-directions

MF:

Magnetic fluid

p :

Film pressure (N/m2)

P :

Fluid pressure in the porous matrix (N/m2)

q :

Fluid velocity vector

s :

Slip parameter (1/m)

t :

Time (s)

VMF:

Variable magnetic field

w.r.t.:

With respect to

W :

Load-carrying capacity (N)

\(\overline{W}\) :

Dimensionless load-carrying capacity defined in Eq. (45)

\(\overline{W}_{e}\) :

Dimensionless load-carrying capacity for exponential squeeze film bearing

\(\overline{W}_{s}\) :

Dimensionless load-carrying capacity for secant squeeze film bearing

\(\overline{W}_{is}\) :

Dimensionless load-carrying capacity for mirror image of secant squeeze film bearing

\(\overline{W}_{p} \;\) :

Dimensionless load-carrying capacity for parallel squeeze film bearing

r,θ, z :

Cylindrical polar co-ordinates

u, v, w :

Radial, tangential and axial (or transverse) velocity components of q

\(\overline{u}\,\), \(\overline{w}\) :

Radial and axial velocity components of fluid velocity in the porous matrix

α :

Inclination of H with the lower plate

\(\beta\) :

Curvature of the upper discs (1/m2)

\(\overline{\beta }\) :

\(\beta\) a2, Dimensionless curvature parameter of the upper disc

\(\xi\) :

Random variable

σ :

Standard deviation

\(\eta\) :

Viscosity of the FF suspension (N s/m2)

\(\eta_{r}\) :

Porosity of the porous matrix in r-direction

\(\mu_{{0}}\) :

Free space permeability (N/A2)

\(\rho\) :

Fluid density (N s2/m4)

\(\phi\) :

Scalar function

\(\phi_{r} {,}\;\phi_{z}\) :

Permeabilities of the porous matrix in r and z-directions, respectively (m2)

\(\Omega _{u}\) :

Angular (or rotational) velocity of the impermeable upper disc (rad./s)

\(\Omega _{l}\) :

Angular (or rotational) velocity of the porous-rough lower disc (rad./s)

\(\overline{\mu }\) :

Magnetic susceptibility

μ * :

Dimensionless magnetization parameter defined in Eq. (40)

ψ r :

Dimensionless radial permeability parameter defined in Eq. (40)

References

  1. R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, New York. NY, 1985)

    Google Scholar 

  2. I. Torres-Diaz, C. Rinaldi, Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids. Soft Matter 10, 8584–8602 (2014)

    Article  ADS  Google Scholar 

  3. R.C. Shah, R.B. Shah, Static and dynamic performances of ferrofluid lubricated long journal bearing. Z. Naturforsch 76(6), 493–506 (2021). https://doi.org/10.1515/zna-2021-0057

    Article  ADS  Google Scholar 

  4. R.C. Shah, S.R. Tripathi, M.V. Bhat, Magnetic fluid based squeeze film between porous annular curved plates with the effect of rotational inertia. Pramana J. Phys. 58(3), 545–550 (2002)

    Article  ADS  Google Scholar 

  5. P. Kuzhir, Free boundary of lubricant film in ferrofluid journal bearings. Tribol. Int. 41(4), 256–268 (2008). https://doi.org/10.1016/j.triboint.2007.07.006

    Article  Google Scholar 

  6. N.S. Patel, D.P. Vakharia, G.M. Deheri, A study on the performance of a magnetic-fluid-based hydrodynamic short journal bearing. ISRN Mech. Eng. (2012). https://doi.org/10.5402/2012/603460

    Article  Google Scholar 

  7. R. Hu, C. Xu, Influence of magnetic fluids’ cohesion force and squeeze dynamic effect on the lubrication performance of journal bearing. Adv. Mech. Eng. 9(9), 1–13 (2017). https://doi.org/10.1177/1687814017732671

    Article  Google Scholar 

  8. R.C. Shah, D.B. Patel, On the ferrofluid lubricated exponential squeeze film-bearings. Z. Naturforsch 76(3), 209–215 (2021). https://doi.org/10.1515/zna-2020-0271

    Article  ADS  Google Scholar 

  9. H. Christensen, Stochastic models for hydrodynamic lubrication of rough surfaces. Proceed. Inst. Mech. Eng. 184, 1013–1022 (1969). https://doi.org/10.1243/PIME_PROC_1969_184_074_02

    Article  Google Scholar 

  10. J. Prakash, K. Tiwari, Effect of surface roughness on the squeeze film between rotating porous annular discs with arbitrary porous wall thickness. Int. J. Mech. Sci. 27(3), 135–144 (1985). https://doi.org/10.1016/0020-7403(85)90054-2

    Article  MathSciNet  Google Scholar 

  11. R.M. Patel, G.M. Deheri, A study of magnetic fluid based squeeze film behaviour between porous circular plates with a concentric circular pocket and effect of surface roughness. Ind. Lubr. Tribol. 55(1), 32–37 (2003). https://doi.org/10.1108/00368790310457115

    Article  Google Scholar 

  12. H.L. Chiang, C.H. Hsu, J.R. Lin, Lubrication performance of finite journal bearings considering effects of couple stresses and surface roughness. Tribol. Int. 37(4), 297–307 (2004). https://doi.org/10.1016/j.triboint.2003.10.005

    Article  Google Scholar 

  13. N.M. Bujurke, D.P. Basti, R.B. Kudenatti, Surface roughness effects on squeeze film behaviour in porous circular disks with couple stress fluid. Transp. Porous Media 71, 185–197 (2008). https://doi.org/10.1007/s11242-007-9119-2

    Article  Google Scholar 

  14. P.I. Andharia, Longitudinal roughness effect on magnetic fluid-based squeeze film between conical plates. Ind. Lubr. Tribol. 62(5), 285–291 (2010). https://doi.org/10.1108/00368791011064446

    Article  Google Scholar 

  15. M. Rajashekar, B. Kashinath, Effect of surface roughness on MHD couple stress squeeze-film characteristics between a sphere and a porous plane surface. Adv. Tribol. (2012). https://doi.org/10.1155/2012/935690

    Article  Google Scholar 

  16. T.C. Hsu, J.H. Chen, H.L. Chiang, T.L. Chou, Combined effects of magnetic field and surface roughness on long journal bearing lubricated with ferrofluid. J. Mar. Sci. Technol. 22(2), 154–162 (2014). https://doi.org/10.6119/JMST-013-0207-4

    Article  Google Scholar 

  17. N.B. Naduvinamani, A. Siddangouda, S. Patil, Effect of surface roughness on static and dynamic characteristics of MHD couple stress lubrication of inclined plane slider bearing. ZAMM Z. Angew. Math. Mech. 97(12), 1635–1644 (2017). https://doi.org/10.1002/zamm.201600191

    Article  MathSciNet  Google Scholar 

  18. R.C. Shah, D.A. Patel, D.B. Patel, Ferrofluid based annular squeeze film bearing with the effects of roughness and micromodel patterns of porous structures. Tribol. Mater. Surfaces Interfaces 12(4), 208–222 (2018)

    Article  Google Scholar 

  19. F. Chorlton, Textbook of Fluid Dynamics (CBS Publishers and Distributors Pvt. Ltd., New Delhi, 2004)

    MATH  Google Scholar 

  20. R.C. Shah, R.C. Kataria, D.A. Patel, Ferrofluid lubricated porous squeeze-film bearing with the modified condition of pressure continuity at the film-porous interface. Tribol. Online 14(3), 123–130 (2019). https://doi.org/10.2474/trol.14.123

    Article  Google Scholar 

  21. R.C. Shah, M.V. Bhat, Ferrofluid lubrication of a parallel plate squeeze film bearing. Theoret. Appl. Mech. 30(3), 221–240 (2003)

    Article  MathSciNet  Google Scholar 

  22. G.A. Maugin, The method of virtual power in continuum mechanics: Application to coupled fields. Acta Mech. 35, 1–70 (1980). https://doi.org/10.1007/BF01190057

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. R.C. Shah, R.C. Kataria, On the squeeze film characteristics between a sphere and a flat porous plate using ferrofluid. Appl. Math. Modell. 40(3), 2473–2484 (2016). https://doi.org/10.1016/j.apm.2015.09.042

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Wu, A review of porous squeeze films. Wear 47, 371–385 (1978)

    Article  Google Scholar 

  25. E.M. Sparrow, G.S. Beavers, I.T. Hwang, Effect of velocity slip on porous-walled squeeze films. J. Lubr. Technol. 94, 260–264 (1972)

    Article  Google Scholar 

  26. J. Prakash, K. Tiwari, Lubrication of a porous bearing with surface corrugations. J. Lubr. Technol. 104, 127–134 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh C. Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, R.C. Ferrofluid lubrication of porous-rough circular squeeze film bearings. Eur. Phys. J. Plus 137, 190 (2022). https://doi.org/10.1140/epjp/s13360-022-02344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02344-z

Navigation