Skip to main content
Log in

Thermo-optical-mechanical excited waves of functionally graded semiconductor material with hyperbolic two-temperature

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A novel theoretical model during a photo-thermoelasticity theory is used to investigate a one-dimensional (1D) problem for the non-homogenous (Functionally Graded (FG)) semiconductor material. This phenomenon is studied in the context of hyperbolic two-temperature theory with a new parameter. The coupled between the thermal-plasma-elastic distributions is investigated theoretically. The basic thermal-elastic and optical physical constants are considered as a function of the horizontal distance during the photothermal transport processes under the impact of both some thermal–mechanical-plasma forces. The Laplace transformation method is applied for the main equations to obtain the analytical solutions of some physical field as well as the thermal, carrier density, temperature, displacement and mechanical distributions during the semiconductor medium. To get the basic variables in Laplace domain analytically, some thermal, mechanical loads and plasma conditions can be applied at the surface of the medium. The inverse of the Laplace transformation is used with numerical technique to obtain the complete solutions of the main physical quantities in space–time domain. The main physical field is displayed graphically and discussed theoretically under the influences of some parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The information applied in this research is ready from the authors at request.

References

  1. M.A. Biot, Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    ADS  MathSciNet  MATH  Google Scholar 

  2. H. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    ADS  MATH  Google Scholar 

  3. A.E. Green, K.A. Lindsay, Thermoelasticity. J. Elast. 2, 1–7 (1972)

    MATH  Google Scholar 

  4. D.S. Chandrasekharaiah, Thermoelasticity with second sound: a review. Appl. Mech. Rev. 39, 355–376 (1986)

    ADS  MATH  Google Scholar 

  5. D.S. Chandrasekharaiah, Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    ADS  Google Scholar 

  6. J.N. Sharma, V. Kumar, C. Dayal, Reflection of generalized thermoelastic waves from the boundary of a half-space. J. Therm. Stres. 26, 925–942 (2003)

    Google Scholar 

  7. Kh. Lotfy, S. Abo-Dahab, Two-dimensional problem of two temperature generalized thermoelasticity with normal mode analysis under thermal shock problem. J. Comput. Theor. Nanosci 12(8), 1709–1719 (2015)

    Google Scholar 

  8. M. Othman, Kh. Lotfy, The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation. J. Comput. Theor. Nanosci 12(9), 2587–2600 (2015)

    Google Scholar 

  9. J.P. Gordon, R.C.C. Leite, R.S. Moore, S.P.S. Porto, J.R. Whinnery, Long-transient effects in lasers with inserted liquid samples. Bull. Am. Phys. Soc. 119, 501 (1964)

    Google Scholar 

  10. L.B. Kreuzer, Ultralow gas concentration infrared absorption spectroscopy. J. Appl. Phys. 42, 2934 (1971)

    ADS  Google Scholar 

  11. A.C. Tam, Ultrasensitive Laser Spectroscopy (Academic Press, New York, 1983), pp. 1–108

    Google Scholar 

  12. A.C. Tam, Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986)

    ADS  Google Scholar 

  13. A.C. Tam, Photothermal Investigations in Solids and Fluids (Academic Press, Boston, 1989), pp. 1–33

    Google Scholar 

  14. D.M. Todorovic, P.M. Nikolic, A.I. Bojicic, Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J. Appl. Phys. 85, 7716 (1999)

    ADS  Google Scholar 

  15. K. Lotfy, Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium. SILICON 11(4), 1863–1873 (2019)

    Google Scholar 

  16. A. Rosencwaig, J. Opsal, W. Smith, D. Willenborg, Detection of thermal waves through optical reflectance. Appl. Phys. Lett. 46, 1013–1018 (1985)

    ADS  Google Scholar 

  17. K. Lotfy, R.S. Tantawi, Photo-thermal-elastic interaction in a functionally graded material (FGM) and magnetic field. SILICON 12(2), 295–303 (2020)

    Google Scholar 

  18. S. Mondal, A. Sur, Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses. Waves Ran. Comput. Med (2020). https://doi.org/10.1080/17455030.2019.1705426

    Article  Google Scholar 

  19. I. Abbas, T. Saeed, M. Alhothuali, hyperbolic two-temperature photo thermal interaction in a semiconductor medium with a cylindrical cavity. SILICON (2020). https://doi.org/10.1007/s12633-020-00570-7

    Article  Google Scholar 

  20. K. Lotfy, A novel model of magneto photothermal diffusion (MPD) on polymer nano-composite semiconductor with initial stress. Waves Ran. Comput. Med (2019). https://doi.org/10.1080/17455030.2019.1566680

    Article  Google Scholar 

  21. Y.Q. Song, D.M. Todorovic, B. Cretin, P. Vairac, Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int. J. Solids Struct. 47, 1871 (2010)

    MATH  Google Scholar 

  22. A. Hobiny, I. Abbas, Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material. Res. Phys. 10, 385–390 (2018)

    Google Scholar 

  23. I. Abbas, F. Alzahrani, A. Elaiw, A DPL model of photothermal interaction in a semiconductor material. Waves Ran. Comp. Med. 29(2), 328–343 (2019)

    Google Scholar 

  24. J.K. Chen, J.E. Beraun, C.L. Tham, Ultrafast thermoelasticity for short-pulse laser heating. Int. J. Eng. Sci. 42, 793–807 (2004)

    Google Scholar 

  25. T.Q. Quintanilla, C.L. Tien, Heat transfer mechanism during short-pulse laser heating of metals. ASME J. Heat Transf. 115, 835–841 (1993)

    Google Scholar 

  26. H.M. Youssef, Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71, 383–390 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  27. H. Youssef, Theory of two-temperature thermoelasticity without energy dissipation. J. Therm. Stress. 34, 138–146 (2011)

    Google Scholar 

  28. H. Youssef, A. El-Bary, Theory of hyperbolic two-temperature generalized thermoelasticity. Mate. Phys. Mech 40, 158–171 (2018)

    Google Scholar 

  29. K. Lotfy, E.S. Elidy, R. Tantawi, Piezo-photo-thermoelasticity transport process for hyperbolic two-temperature theory of semiconductor material. Int. J. Mod. Phys. C 32(7), 2150088 (2021)

    ADS  MathSciNet  Google Scholar 

  30. A. Mahdy, Kh. Lotfy, A. El-Bary, I. Tayel, Variable thermal conductivity and hyperbolic two-temperature theory during magneto-photothermal theory of semiconductor induced by laser pulses. Eur. Phys. J. Plus 136, 651 (2021)

    Google Scholar 

  31. M. Marin, A domain of influence theorem for microstretch elastic materials. Nonlinear Anal.: RWA 11(5), 3446–3452 (2010)

    MathSciNet  MATH  Google Scholar 

  32. M. Marin, A partition of energy in thermoelasticity of microstretch bodies. Nonlinear Anal.: RWA 11(4), 2436–2447 (2010)

    MathSciNet  MATH  Google Scholar 

  33. I. Abbas, M. Marin, Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse, Iran. J. Sci. Technol.-Trans. Mech. Eng. 42(1), 57–71 (2018)

    Google Scholar 

  34. M. Marin, M. Othman, A. Seadawy, C. Carstea, A domain of influence in the Moore-Gibson-Thompson theory of dipolar bodies. J. Taibah Uni. Sci. 14(1), 653–660 (2020)

    Google Scholar 

  35. S. Abo-Dahab, I. Abbas, LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity. Appl. Math. Mod. 35(8), 3759–3768 (2011)

    MathSciNet  MATH  Google Scholar 

  36. I. Abbas, Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity. Appl. Math. Mod. 39(20), 6196–6206 (2015)

    MathSciNet  MATH  Google Scholar 

  37. A. Hobiny, I. Abbas, Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source. I. J. Heat Mass Trans. 124, 1011–1014 (2018)

    Google Scholar 

  38. I. Abbas, A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic halfspace with energy dissipation. Sadhana 36(3), 411–423 (2011)

    MATH  Google Scholar 

  39. A. Mandelis, M. Nestoros, C. Christofides, Thermoelectronic-wave coupling in laser photo-thermal theory of semiconductors at elevated temperature. Opt. Eng. 36, 459 (1997)

    ADS  Google Scholar 

  40. D.M. Todorovic, Plasma, thermal, and elastic waves in semiconductors. Rev. Sci. Instrum. 74, 582 (2003)

    ADS  Google Scholar 

  41. C. Christofides, A. Othonos, E. Loizidou, Influence of temperature and modulation frequency on the thermal activation coupling term in laser photo-thermal theory. J. Appl. Phys. 92, 1280 (2002)

    ADS  Google Scholar 

  42. M.S. Mohamed, K. Lotfy, A. El-Bary, A. Mahdy, Absorption illumination of a 2D rotator semi-infinite thermoelastic medium using a modified Green and Lindsay model. Case Stud. Therm. Eng. 26, 101165 (2021)

    Google Scholar 

  43. G. Honig, U. Hirdes, A method for the numerical inversion of Laplace Transforms. Comput. Appl. Math. 10(1), 113–132 (1984)

    MathSciNet  MATH  Google Scholar 

  44. K. lotfy, M. Gabr, Response of a semiconducting infinite medium under two temperature theory with photo-thermal excitation due to laser pulses. Opt. Laser Technol. 97, 198–208 (2017)

    ADS  Google Scholar 

  45. K. Lotfy, Analytical solutions of photo-thermal-elastic waves in a semiconductor material Due to pulse heat flux with thermal memory. SILICON (2019). https://doi.org/10.1007/s12633-019-00120-w

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Lotfy.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdy, A.M.S., Lotfy, K. & El-Bary, A. Thermo-optical-mechanical excited waves of functionally graded semiconductor material with hyperbolic two-temperature. Eur. Phys. J. Plus 137, 105 (2022). https://doi.org/10.1140/epjp/s13360-021-02298-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02298-8

Navigation