Skip to main content
Log in

Delocalized charge through the DNA with microscopic effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Charge transfer and localization via modulation instability are studied in extended DNA model. We show that the model can be reduced to a set of five coupled equations. The linear stability analysis of plane-wave solutions is studied, and the growth rate of instability is plotted numerically. We show that the growth rate of instability is highly modified by the torsional modes. We discuss the importance of \(\alpha \) parameter, the coupling parameter between charges and internal molecular vibration, which steeply influences the migration of charges in the lattice. The increase in \(\alpha \) also induces a strong localization of information in the molecule. By introducing the thermal effect, we prove that the localized structures are formed; thereafter, the spreading of information inside the molecule becomes unperceptively. The density of charges flowing around the pair of bases is very poor. We observe a gradual extinction of localized structures when we increase the thermal effect. We show that the transfer and the storage of information in biosystems become more explainable by the quantum treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.B. Hall, R.E. Holmkin, J.K. Barton, Nature 382, 731 (1996)

    Article  ADS  Google Scholar 

  2. D.B. Hall, J.K. Barton, J. Am. Chem. Soc. 119, 5045 (1997)

    Article  Google Scholar 

  3. M.R. Arkin, E.D.A. Stemp, S.C. Pulver, J.K. Barton, Chem. Biol. 4, 369 (1997)

    Article  Google Scholar 

  4. Y. Okahata, T. Kobayashi, K. Tanaka, M. Shimomura, J. Am. Chem. Soc. 120, 6165 (1998)

    Article  Google Scholar 

  5. D. Porath, A. Bezryadin, S. Vries, C. Dekker, Nature (London) 403, 635 (2000)

    Article  ADS  Google Scholar 

  6. Z.G. Yu, X. Song, Phys. Rev. Lett. 86, 6018 (2001)

    Article  ADS  Google Scholar 

  7. S. Takeno, J. Phys. Soc. Jpn. 59, 3127–3141 (1990)

    Article  ADS  Google Scholar 

  8. L.V. Yakushevich, Nonlinear DNA dynamics: a new model. Phys. Lett. A 136, 413–417 (1989)

    Article  ADS  Google Scholar 

  9. G. Gaeta, Solitons in the Yakushevich model of DNA beyond the contact approximation. Phys. Rev. 74, 021921 (2006)

    ADS  MathSciNet  Google Scholar 

  10. S.O. Kelley, J.K. Barton, Electron transfer between bases in double helical DNA. Science 283(5400), 375–381 (1999)

    Article  ADS  Google Scholar 

  11. V. Apalkov, T. Chakraborty, Phys. Rev. B 78, 104424 (2008)

    Article  ADS  Google Scholar 

  12. M.G. Velarde, W. Ebeling, A.P. Chetverikov, Int. J. Bifurc. Chaos 15, 245–251 (2005)

    Article  Google Scholar 

  13. H. Ngoubi, G.H. Ben-Bolie, T.C. Kofané, J. Biol Phys. 43, 341–351 (2017)

    Article  Google Scholar 

  14. A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. B 88, 202 (2015)

    Article  ADS  Google Scholar 

  15. S.E. Shirmovsky, Quantum dynamics of a hole migration through DNA: A single strand DNA model. Biophys. Chem. 217, 42–57 (2017)

    Article  Google Scholar 

  16. D.L. Boyda, S.E. Shirmovsky, Study of DNA conducting properties: Reversible and irreversible evolution. Biophys. Chem. 217, 180–181 (2013)

    Google Scholar 

  17. H. Ngoubi, G.H. Ben-Bolie, T.C. Kofané, Charge transport in DNA model with solvent interaction. J. Biol Phys. 44, 483–500 (2018)

    Article  Google Scholar 

  18. M. Kuwabara, Y. Ono and A. Terai, Motion of charged Soliton in polyacetylene due to electric field. II. Behavior of Width. J. Phys. Soc. Jpn. 60, 1286-1293

  19. C.B. Tabi, A. Mohamadou, T.C. Kofané, Soliton excitations in the DNA double helix. Phys. Scr. 77, 045002 (2008)

    Article  ADS  Google Scholar 

  20. M. Zoli, Thermodynamics of twisted DNA with solvent interaction. J. Chem. Phys. 135, 115101 (2011)

    Article  ADS  Google Scholar 

  21. K. Drukker, G. Wu and G.C Schatz: Model simulations of DNA denaturation dynamics, J. Chem. Phys.114, 579, (2001)

  22. G. Weber, Sharp DNA denaturation due to solvent interaction. Europhys. Lett. 73, 806–811 (2006)

    Article  ADS  Google Scholar 

  23. C.B. Tabi, A. Mohamadou, T.C. Kofané, Modulational instability of charge transport in Peyrard-Bishop-Holstein. J. Phys. Condens. Matter 21, 335101 (2009)

    Article  Google Scholar 

  24. M. Gleiser, Phys. Rev. D 49, 2978 (1994)

    Article  ADS  Google Scholar 

  25. E.J. Copeland, M. Gleiser, H.R. Muller, Phys. Rev. D 52, 1920 (1995)

    Article  ADS  Google Scholar 

  26. Gleiser M and R. C. Howell , Phys. Rev. E 68, 065203, (2003)

  27. E. Simo, J.G. Caputo, Chin. J. Phys. 46, 201 (2008)

    Google Scholar 

  28. S. P. T. Mukam, V. K. Kuetche and T B. Bouetou Eur. Phys. J. Plus 132, 182, (2017)

  29. R. Y. Ondoua, J. C. Mimshe Fewu, D. Belobo Belobo, C. B. Tabi and H. P. Ekobena Fouda, Eur. Phys. J. Plus 136 274 (2021)

  30. C.B. Tabi, A. Dang Koko, R. Oumarou Doko , H.P. Ekobena Fouda and T.C. Kofané, Physica A 442 498-509 (2016)

  31. E. Schrödinger, What is Life? (The Physical aspect of the Living Cell, Cambridge, 1944)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngoubi, H., Ben-Bolie, G.H. & Kofané, T.C. Delocalized charge through the DNA with microscopic effect. Eur. Phys. J. Plus 137, 166 (2022). https://doi.org/10.1140/epjp/s13360-021-02282-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02282-2

Navigation