Skip to main content
Log in

A novel adaptive moving average method for signal denoising in strong noise background

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The moving average (MA) method has been widely used in signal processing, but it has problems of the dead zone and the fixed window. In this paper, an adaptive moving average (AMA) filtering method is proposed, which can sniff the inherent characteristics of the signal and assign time-varying optimal parameters to signal processing, hence solve dead zone and the fixed window problems. Firstly, this paper builds the theoretical framework of AMA, including the trial steps and optimization of the necessary parameters. To verify the effectiveness of the AMA, three signal processing methods are taken as comparison methods to process the noisy simulation and experimental signals. Comparison methods includes the MA, variational mode decomposition (VMD), and wavelet threshold denoising (WTD). Signals processed include linear frequency modulation (LFM) simulation signal, aperiodic square wave (ASW) simulation signal, LFM experimental signal produced by a signal generator, and nondestructive test signal of wire rope. Also, the output is analyzed qualitatively and quantitatively with signal-to-noise ratio (SNR), cross-correlation coefficient, amplitude error, and a newly defined local coincidence index. Compared to MA, VMD and WTD, the proposed AMA can solve the dead zone problem, recover noisy signal with higher SNR, cross-correlation coefficient, and lower amplitude error. These results indicate that AMA is a promising method in signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. L. He, C. Tan, G. Zhang, Eur. Phys. J. Plus 136(7), 759 (2021)

    Article  Google Scholar 

  2. D. Huang, J. Yang, D. Zhou, G. Litak, IEEE Trans. Instrum. Meas. 69(1), 109 (2020)

    Article  Google Scholar 

  3. D. Huang, J. Yang, D. Zhou, M.A.F. Sanjuán, H. Liu, Commun. Nonlinear Sci. Numer. Simul. 66, 156 (2019)

    Article  ADS  Google Scholar 

  4. C. Wu, Z. Wang, J. Yang, D. Huang, M.A.F. Sanjuán, Eur. Phys. J. Plus 135(1), 130 (2020)

    Article  Google Scholar 

  5. D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, arXiv preprint arxiv: 1706.03825 (2017)

  6. S. Chaki, A. Routray, W.K. Mohanty, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(12), 5265 (2017)

    Article  ADS  Google Scholar 

  7. M. Ghorat, G.B. Gharehpetian, H. Latifi, M.A. Hejazi, IEEE Trans. Instrum. Meas. 67(10), 2262 (2018)

    Article  Google Scholar 

  8. L. Chen, X. Jiang, X. Liu, Z. Zhou, IEEE Trans. Image Process. 29, 9044 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Gao, Z. Du, Z. Shi, Z. Xu, Q. Cao, R. Tang, Signal Image Video Process. 12(8), 1523 (2018)

    Article  Google Scholar 

  10. W.B. Lopes, C.G. Lopes, IEEE Trans. Signal Process. 67(14), 3649 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Piotrowski, J. Nikadon, D. Gutiérrez, IEEE Trans. Signal Process. 67(3), 553 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Zhao, Y.S. Shmaliy, B. Huang, F. Liu, Automatica 53, 355 (2015)

    Article  Google Scholar 

  13. Y. Wang, F. Ding, L. Xu, Digit. Signal Process. 72, 44 (2018)

    Article  MathSciNet  Google Scholar 

  14. S. Liu, G. Wei, Y. Song, Y. Liu, Neurocomputing 207, 708 (2016)

    Article  Google Scholar 

  15. J. Pan, X. Yang, H. Cai, B. Mu, Neurocomputing 173, 1625 (2016)

    Article  Google Scholar 

  16. H.S. Ramadan, M. Becherif, F. Claude, Int. J. Hydrog. Energy 42(48), 29033 (2017)

    Article  Google Scholar 

  17. R. Van Der Merwe, A. Doucet, N. De Freitas, and E. A. Wan, Adv. Neural Inf. Process. Syst. 584 (2001)

  18. Y.S. Shmaliy, S.H. Khan, S. Zhao, O. Ibarra-Manzano, IEEE Trans. Control Syst. Technol. 25(3), 1141 (2017)

    Article  Google Scholar 

  19. P.-S. Kim, Digit. Signal Process. 20(3), 935 (2010)

    Article  Google Scholar 

  20. F. Ding, X. Ban, and X. Liu, 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, pp. 1278 (2016)

  21. Y.R. Teo, A.J. Fleming, A.A. Eielsen, and J. Tommy Gravdahl, J. Dyn. Syst. Meas. Control 138 (8) (2016)

  22. R. Bhat, J. Zhou, H. Krishnaswamy, IEEE J. Solid-State Circuits 52(12), 3405 (2017)

    Article  ADS  Google Scholar 

  23. A.A. Safaei Pirooz, R.G.J. Flay, L. Minola, C. Azorin-Molina, D. Chen, J. Wind. Eng. Ind. Aerodyn. 206, 104354 (2020)

    Article  Google Scholar 

  24. X. Yuan, Q. Tan, X. Lei, Y. Yuan, X. Wu, Energy 129, 122 (2017)

    Article  Google Scholar 

  25. A. Ali, Y. Wang, W. Li, and X. He, 2015 International Conference on Emerging Technologies (ICET), Peshawar, Pakistan, p. 1 (2015)

  26. N.H. Hung, Y. Zhaojun, J. Bus. Manag. 2(3), 22 (2013)

    Article  Google Scholar 

  27. S. Lauren, and S.D. Harlili, 2014 International Conference of Advanced Informatics: Concept, Theory and Application (ICAICTA), Bandung, Indonesia, p. 135 (2014)

  28. G.H. Falciglia, K. Murthy, J. Holl, H.L. Palac, Y. Oumarbaeva, P. Yadavalli, D. Woods, D.T. Robinson, JPEN. J. Parenter Enteral Nutr. 42(4), 805 (2018)

    Google Scholar 

  29. Y. Wang, F. Ding, IMA J. Math. Control Inf. 34(3), 745 (2015)

    Article  Google Scholar 

  30. M. Nakano, A. Takahashi, S. Takahashi, Expert Syst. Appl. 73, 187 (2017)

    Article  Google Scholar 

  31. M. Li, X. Liu, F. Ding, J. Frankl. Inst. 354(12), 4861 (2017)

    Article  Google Scholar 

  32. J.M. Pak, C.K. Ahn, Y.S. Shmaliy, P. Shi, M.T. Lim, IEEE Trans. Control Syst. Technol. 24(3), 1052 (2015)

    Article  Google Scholar 

  33. K. Dragomiretskiy, D. Zosso, IEEE Trans. Signal Process. 62(3), 531 (2013)

    Article  ADS  Google Scholar 

  34. E. Yahaghi, M. Mirzapour, A. Movafeghi, B. Rokrok, Eur. Phys. J. Plus 135(1), 42 (2020)

    Article  Google Scholar 

  35. S. Hansun, 2013 Conference on New Media Studies (CoNMedia), Tangerang, Indonesia, p. 1 (2013)

  36. D. Zhang, E. Zhang, S. Pan, NDT E Int. 114, 102299 (2020)

    Article  Google Scholar 

  37. S. Liu, Y. Sun, X. Jiang, Y. Kang, Mech. Syst. Signal Process. 163, 108156 (2022)

    Article  Google Scholar 

  38. Y. Yao, G. Li, X. Zhang, X. Teng, and M. Huang, 2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT), p. 165 (2020)

  39. S. Liu, Y. Sun, X. Jiang, Y. Kang, Measurement 171, 108768 (2021)

    Article  Google Scholar 

  40. J. Zhang, S. Lu, J. Chen, J. Fail. Anal. Prev. 20(5), 1541 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the National Natural Science Foundation of China (Grant No. 12072362), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERDF, EU) under Project No. PID2019-105554GB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, Z., Yang, J., Sanjuán, M.A.F. et al. A novel adaptive moving average method for signal denoising in strong noise background. Eur. Phys. J. Plus 137, 50 (2022). https://doi.org/10.1140/epjp/s13360-021-02279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02279-x

Navigation