Skip to main content
Log in

A determination of the longitudinal structure function \(F_{L}\) from the parametrization of \(F_{2}\) based on the Laplace transformation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

I calculate the longitudinal structure function, using Laplace transform techniques, from the parametrization of the structure function \(F_{2}(x,Q^{2})\) and its derivative at low values of the Bjorken variable x. I consider the effect of the charm quark mass to the longitudinal structure function, which leads to rescaling variable for \(n_{f}=4\). The results are compared with the H1 collaboration data and the CTEQ-Jefferson Lab (CJ) collaboration (Accardi et al. in Phys Rev D 93:114017, 2016) parametrization model. The obtained results with the Bjorken variable of x are found to be comparable with the results Kaptari et al. (Phys Rev D 99:096019, 2019) which is based on the Mellin transform techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Abelleira Fernandez et al., [LHeC Collaboration], J. Phys. G 39, 075001 (2012)

  2. P. Agostini et al., (LHeC Collab- oration and FCC-he Study Group), CERN-ACC-Note-2020-0002. arXiv:2007.14491 [hep-ex] (2020)

  3. G. Altarelli, G. Martinelli, Phys. Lett. B 76, 89 (1978)

    Article  ADS  Google Scholar 

  4. L.P. Kaptari et al., Phys. Rev. D 99, 096019 (2019)

    Article  ADS  Google Scholar 

  5. L.P. Kaptari et al., JETP Lett. 109, 281 (2019)

    Article  ADS  Google Scholar 

  6. M.M. Block, L. Durand, P. Ha, Phys. Rev. D 89, 094027 (2014)

    Article  ADS  Google Scholar 

  7. G.R. Boroun, JETP Lett. 114, 3 (2021)

    Article  Google Scholar 

  8. G.R. Boroun, Eur. Phys. J. Plus 135, 68 (2020)

    Article  Google Scholar 

  9. G.R. Boroun, Phys. Rev. C 97, 015206 (2018)

    Article  ADS  Google Scholar 

  10. G.R. Boroun, Eur. Phys. J. Plus 129, 19 (2014)

    Article  ADS  Google Scholar 

  11. J. Blumlein, J. Phys. G 19, 1623 (1993)

    Article  ADS  Google Scholar 

  12. A.M. Cooper-Sarkar, Z. Phys. C 39, 281 (1988)

    Article  ADS  Google Scholar 

  13. J. Schwartz. arXiv:1010.1023 [hep-ex] (2010)

  14. S. Simula, Phys. Lett. B 574, 189 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  15. B. Rezaei, G.R. Boroun, Eur. Phys. J. A 56, 262 (2020)

    Article  ADS  Google Scholar 

  16. N. Baruah, M.K. Das, J.K. Sarma, Eur. Phys. J. Plus 129, 229 (2014)

    Article  Google Scholar 

  17. G.R. Boroun, B. Rezaei, J.K. Sarma, Int. J. Mod. Phys. A 29, 1450189 (2014)

    Article  ADS  Google Scholar 

  18. A.V. Kotikov, A.V. Lipatov, N.P. Zotov, J. Exp. Theo. Phys. 101, 811 (2005)

    Article  ADS  Google Scholar 

  19. A.V. Kotikov, A.V. Lipatov, N.P. Zotov, Eur. Phys. J. C 27, 219 (2003)

    Article  ADS  Google Scholar 

  20. A.V. Kotikov, G. Parente, Mod. Phys. Lett. A 12, 963 (1997)

    Article  ADS  Google Scholar 

  21. A.V. Kotikov, J. Exp. Theo. Phys. 80, 979 (1995)

    ADS  Google Scholar 

  22. G.R. Boroun, B. Rezaei, Eur. Phys. J. C 72, 2221 (2012)

    Article  ADS  Google Scholar 

  23. G.R. Boroun, B. Rezaei, Phys. Lett. B 816, 136274 (2021)

    Article  Google Scholar 

  24. M.M. Block, L. Durand, P. Ha, D.W. Mckay, Phys. Rev. D 83, 054009 (2011)

    Article  ADS  Google Scholar 

  25. G.R. Boroun, S. Zarrin, F. Teimoury, Eur. Phys. J. Plus 130, 214 (2015)

    Article  Google Scholar 

  26. H. Khanpour, A. Mirjalili, S.A. Tehrani, Phys. Rev. C 95, 035201 (2017)

    Article  ADS  Google Scholar 

  27. G.R. Boroun, B. Rezaei, Eur. Phys. J. C 73, 2412 (2013)

    Article  ADS  Google Scholar 

  28. S.M. Moosavi Nejad, H. Khanpour, S. A. Tehrani, M. Mahdavi, Phys. Rev. C 94, 045201 (2016)

  29. S. Dadfar, S. Zarrin, Eur. Phys. J. C 80, 319 (2020)

    Article  ADS  Google Scholar 

  30. M.A.G. Aivazis et al., Phys. Rev. D 50, 3102 (1994)

    Article  ADS  Google Scholar 

  31. H1 and ZEUS Collaborations (Abramowicz H. et al.), Eur. Phys. J. C 78, 473 (2018)

  32. H1 Collab. (V. Andreev , A. Baghdasaryan, S. Baghdasaryan et al.), Eur. Phys. J. C 74, 2814 (2014)

  33. H1 Collab. (F.D. Aaron , C. Alexa, V. Andreev et al.), Eur. Phys. J. C 71, 1579 (2011)

  34. A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Phys. Rev. D 93, 114017 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Razi University for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Boroun.

Appendix A

Appendix A

The proton structure function parameterized in Ref. [6] provides good fits to the HERA data at low x and large \(Q^{2}\) values. The explicit expression for the proton structure function, with respect to the Block–Halzen fit, in a range of the kinematical variables x and \(Q^{2}\), \(x\le 0.1\) and \(0.15\,\mathrm {GeV}^{2}<Q^{2}<3000\,\mathrm {GeV}^{2}\), is defined by the following form

$$\begin{aligned} F^{\gamma p}_{ 2}(x,Q^{2})&= D(Q^{2})(1- x)^{n}\left[ C(Q^{2})+A(Q^{2})\ln \left( \frac{1}{x}\frac{Q^{2}}{Q^{2}+\mu ^{2}}\right) \right. \nonumber \\&\quad +\left. B(Q^{2})\ln ^{2}\left( \frac{1}{x}\frac{Q^{2}}{Q^{2}+\mu ^{2}}\right) \right] , \end{aligned}$$
(11)
Table 1 The effective parameters at low x for \(0.15\,\mathrm {GeV}^{2}<Q^{2}<3000\,\mathrm {GeV}^{2}\) provided by the following values

where

$$\begin{aligned} A(Q^{2})= & {} a_{0} + a_{1} {\ln }\left( 1+\frac{Q^{2}}{\mu ^{2}}\right) + a_{2}{\ln }^{2}\left( 1+\frac{Q^{2}}{\mu ^{2}}\right) ,\nonumber \\ B(Q^{2})= & {} b_{0} + b_{1} {\ln }(1+\frac{Q^{2}}{\mu ^{2}}) + b_{2}{\ln }^{2}\left( 1+\frac{Q^{2}}{\mu ^{2}}\right) ,\nonumber \\ C(Q^{2})= & {} c_{0} + c_{1} {\ln }\left( 1+\frac{Q^{2}}{\mu ^{2}}\right) ,\nonumber \\ D(Q^{2})= & {} \frac{Q^{2}(Q^{2}+\lambda M^{2})}{(Q^{2}+M^{2})^2}. \end{aligned}$$
(12)

Here, M is the effective mass and \(\mu ^{2}\) is a scale factor. The additional parameters with their statistical errors are given in Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroun, G.R. A determination of the longitudinal structure function \(F_{L}\) from the parametrization of \(F_{2}\) based on the Laplace transformation. Eur. Phys. J. Plus 137, 32 (2022). https://doi.org/10.1140/epjp/s13360-021-02260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02260-8

Navigation