Skip to main content
Log in

Sensitivity analysis for the anomalous \(W^+W^-\gamma \) couplings at the LHeC and the FCC-he

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the anomalous \(W^+W^-\gamma \) couplings in performing the production of the W-pair through the process \(e^- p\,\rightarrow \,e^-\gamma ^*\gamma ^* p\,\rightarrow \,e^-W^+W^-p\) at the Large Hadron electron Collider (LHeC) and the Future Circular Collider-hadron electron (FCC-he). We examine the pure hadronic, the semi-leptonic and the pure leptonic decay channels of the produced W-pair. We assume the center-of-mass energies of \(\sqrt{s}=1.30\) and 1.98 TeV and the integrated luminosities of 10–100 fb\(^{-1}\) for the LHeC and the center-of-mass energies of \(\sqrt{s}=3.46\) and 5.29 TeV and the integrated luminosities of 100–2000 fb\(^{-1}\) for the FCC-he. The best limits at 95\(\%\) confidence level obtained for the anomalous couplings \(\Delta \kappa _{\gamma }\) and \(\lambda _{\gamma }\) are \(\Delta \kappa _{\gamma }=[-0.00208; 0.00206]\) and \(\lambda _{\gamma }=[- 0.00174; 0.00834]\). By comparing these limits with the experimental limits, we present the potentials of the process and future ep colliders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The manuscript does not need to contain any electronic supplementary material.

References

  1. M. Baak et al., Working group report: precision study of electroweak interactions (2013) [arXiv:1310.6708 [hep-ph]]

  2. K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Nucl. Phys. B 282, 253–307 (1987)

    Article  ADS  Google Scholar 

  3. L. Bian, J. Shu, Y. Zhang, JHEP 09, 206 (2015). [arXiv:1507.02238 [hep-ph]]

    Article  ADS  Google Scholar 

  4. K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Phys. Rev. D 48, 2182 (1993)

    Article  ADS  Google Scholar 

  5. J. Wudka, Int. J. Mod. Phys. A 09, 2301–2361 (1994). [arXiv:hep-ph/9406205]

    Article  ADS  Google Scholar 

  6. C. Degrande, N. Greiner, W. Kilian, O. Mattelaer, H. Mebane, T. Stelzer, S. Willenbrock, C. Zhang, Ann. Phys. 335, 21–32 (2013). [arXiv:1205.4231 [hep-ph]]

    Article  ADS  Google Scholar 

  7. İ Şahin, A.A. Billur, Phys. Rev. D 83, 035011 (2011). [arXiv:1101.4998 [hep-ph]]

  8. S.M. Etesami, S. Khatibi, M.M. Najafabadi, Eur. Phys. J. C 76, 533 (2016). [arXiv:1606.02178 [hep-ph]]

    Article  ADS  Google Scholar 

  9. L. Bian, J. Shu, Y. Zhang, Int. J. Mod. Phys. A 31, 1644008 (2016). [arXiv:1612.03888 [hep-ph]]

    Article  ADS  Google Scholar 

  10. A. Falkowski, M.G. Alonso, A. Greljo, D. Marzocca, M. Son, JHEP 02, 115 (2017). [arXiv:1609.06312 [hep-ph]]

    Article  ADS  Google Scholar 

  11. E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81, 074003 (2010). [arXiv:0912.5161 [hep-ph]]

    Article  ADS  Google Scholar 

  12. D. Bhatia, U. Maitra, S. Raychaudhuri, Phys. Rev. D 99, 095017 (2019). [arXiv:1804.05357 [hep-ph]]

    Article  ADS  Google Scholar 

  13. B. Şahin, Mod. Phys. Lett. A 32, 1750205 (2017)

    Article  ADS  Google Scholar 

  14. C.B. Mariotto, M.V.T. Machado, Phys. Rev. D 86, 033009 (2012). [arXiv:1208.5685 [hep-ph]]

    Article  ADS  Google Scholar 

  15. I.T. Cakir, O. Cakir, A. Senol, A.T. Tasci, Acta Phys. Polon. B 45, 1947 (2014). [arXiv:1406.7696 [hep-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Li, X.M. Shen, K. Wang, T. Xu, L. Zhang, G. Zhu, Phys. Rev. D 97, 075043 (2018). [arXiv:1711.05607 [hep-ph]]

    Article  ADS  Google Scholar 

  17. A. Gutierrez-Rodriguez, M. Köksal, A.A. Billur, M.A. Hernandez-Ruiz, J. Phys. G Nucl. Part. Phys. 47, 055005 (2020). [arXiv:1910.02307 [hep-ph]]

    Article  ADS  Google Scholar 

  18. M. Köksal, A.A. Billur, A. Gutierrez-Rodriguez, M.A. Hernandez-Ruiz, Phys. Lett. B 808, 135661 (2020). [arXiv:1910.06747 [hep-ph]]

    Article  Google Scholar 

  19. S. Kumar, P. Poulose, Int. J. Mod. Phys. A 30, 1550215 (2015). [arXiv:1501.01380 [hep-ph]]

    Article  ADS  Google Scholar 

  20. S. Spor, M. Köksal, Search for the anomalous \(WW\gamma \) couplings through the process \(e^-e^+\,\rightarrow \,\nu _e{\overline{\nu }}_e\gamma \) at ILC with unpolarized and polarize beams, (2020) [arXiv:2009.05848 [hep-ph]]

  21. R. Rahaman, R.K. Singh, Phys. Rev. D 101, 075044 (2020). [arXiv:1909.05496 [hep-ph]]

    Article  ADS  Google Scholar 

  22. V. Arı, A.A. Billur, S.C. İnan, M. Köksal, Nucl. Phys. B 906, 211–230 (2016). [arXiv:1506.08998 [hep-ph]]

    Article  ADS  Google Scholar 

  23. A. A. Billur, M. Köksal, A. Gutierrez-Rodriguez, M. A. Hernandez-Ruiz, ”Model-independent limits for anomalous triple gauge bosons \(W^+W^-\gamma \) coupling at the CLIC,” (2019) [arXiv:1909.10299 [hep-ph]]

  24. A.M. Sirunyan et al., CMS Collaboration. JHEP 12, 062 (2019). [arXiv:1907.08354 [hep-ex]]

  25. M. Aaboud et al., ATLAS collaboration. Eur. Phys. J. C 77, 563 (2017). [arXiv:1706.01702 [hep-ex]]

  26. T. Aaltonen et al., CDF collaboration. Phys. Rev. Lett. 104, 201801 (2010). [arXiv:0912.4500 [hep-ex]]

  27. V.M. Abazov et al., D0 collaboration. Phys. Lett. B 718, 451–459 (2012). [arXiv:1208.5458 [hep-ex]]

  28. S. Schael et al., ALEPH, DELPHI, L3, OPAL and LEP Electroweak Collaborations. Phys. Rept. 532, 119–244 (2013). [arXiv:1302.3415 [hep-ex]]

  29. H. Baer, T. Barklow, K. Fujii, Y. Gao, A. Hoang, S. Kanemura, J. List, H. E. Logan, et al., ”The International Linear Collider Technical Design Report - Volume 2: Physics,” (2013) [arXiv:1306.6352 [hep-ph]]

  30. V.M. Budnev, I.F. Ginzburg, G.V. Meledin, V.G. Serbo, Phys. Rept. 15, 181–282 (1975)

    Article  ADS  Google Scholar 

  31. G. Baur, K. Hencken, D. Trautmann, S. Sadovsky, Y. Kharlov, Phys. Rept. 364, 359–450 (2002). [arXiv:hep-ph/0112211]

    Article  ADS  Google Scholar 

  32. K. Piotrzkowski, Phys. Rev. D 63, 071502 (2001). [arXiv:hep-ex/0009065]

    Article  ADS  Google Scholar 

  33. A. Abulencia et al., CDF Collaboration. Phys. Rev. Lett. 98, 112001 (2007). [arXiv:hep-ex/0611040]

  34. T. Aaltonen et al., CDF Collaboration. Phys. Rev. Lett. 102, 222002 (2009). [arXiv:0902.2816 [hep-ex]]

  35. T. Aaltonen et al., CDF Collaboration. Phys. Rev. Lett. 102, 242001 (2009). [arXiv:0902.1271 [hep-ex]]

  36. V.M. Abazov et al., D0 Collaboration. Phys. Rev. D 88, 012005 (2013). [arXiv:1305.1258 [hep-ex]]

  37. S. Chatrchyan et al., CMS Collaboration. JHEP 01, 052 (2012). [arXiv:1111.5536 [hep-ex]]

  38. S. Chatrchyan et al., CMS Collaboration. JHEP 11, 080 (2012). [arXiv:1209.1666 [hep-ex]]

  39. S. Chatrchyan et al., CMS Collaboration. JHEP 07, 116 (2013). [arXiv:1305.5596 [hep-ex]]

  40. S. Atağ, A.A. Billur, JHEP 11, 060 (2010). [arXiv:1005.2841 [hep-ph]]

    Article  ADS  Google Scholar 

  41. L.N. Epele, H. Fanchiotti, C.A.G. Canal, V.A. Mitsou, V. Vento, Eur. Phys. J. Plus 127, 60 (2012). [arXiv:1205.6120 [hep-ph]]

    Article  Google Scholar 

  42. R.S. Gupta, Phys. Rev. D 85, 014006 (2012). [arXiv:1111.3354 [hep-ph]]

    Article  ADS  Google Scholar 

  43. H. Sun, Nucl. Phys. B 886, 691–711 (2014). [arXiv:1402.1817 [hep-ph]]

    Article  ADS  Google Scholar 

  44. M. Köksal, V. Arı, A. Senol, Adv. High Energy Phys. 2016, 8672391 (2016). [arXiv:1606.04433 [hep-ph]]

    Article  Google Scholar 

  45. M.A. Hernandez-Ruiz, A. Gutierrez-Rodriguez, M. Köksal, A.A. Billur, Nucl. Phys. B 941, 646–664 (2019). [arXiv:1812.08971 [hep-ph]]

    Article  ADS  Google Scholar 

  46. İ. Şahin, S. Spor, D. Yılmaz, G.A. Selcin, J. Phys. G: Nucl. Part. Phys. 47, 035002 (2020). [arXiv:1901.05434 [hep-ph]]

  47. A. Gutierrez-Rodriguez, M.A. Hernandez-Ruiz, E. Gurkanli, V. Ari, M. Köksal, Eur. Phys. J. C 81, 210 (2021). [arXiv:2005.11509 [hep-ph]]

    Article  ADS  Google Scholar 

  48. A. Belyaev, N.D. Christensen, A. Pukhov, Comput. Phys. Commun. 184, 1729–1769 (2013). [arXiv:1207.6082 [hep-ph]]

    Article  ADS  Google Scholar 

  49. B. Mellado and the LHeC Study Group, J. Phys.: Conf. Ser. 455, 012019 (2013)

  50. A. Caldwell, R. Ent, A. Levy, P. Newman, F. Olness, The “DIS and Related Subjects (Fundamental Science from Lepton-Hadron Scattering”, Strategy Document, 2018). [arXiv:1812.08110 [hep-ph]]

  51. H. Abramowicz et al., H1 and ZEUS Collaborations. Eur. Phys. J. C 75, 580 (2015). [arXiv:1506.06042 [hep-ex]]

  52. J. L. Abelleria Fernandez et al. [LHeC Study Group], J. Phys. G: Nucl. Part. Phys. 39, 075001 (2012) [arXiv:1206.2913 [physics.acc-ph]]

  53. A. Abada et al., FCC Collaboration. Eur. Phys. J. C 79, 474 (2019)

  54. O. Brüning, J. Jowett, M. Klein, D. Pellegrini, D. Schulte, F. Zimmermann, “Future Circular Collider Study FCC-he Baseline Parameters,” EDMS 17979910 FCC-ACC-RPT-0012, V1.0, 6 April, 2017. [https://fcc.web.cern.ch/Documents/FCCheBaselineParameters.pdf]

  55. H. Hesari, H. Khanpour, M.M. Najafabadi, Phys. Rev. D 97, 095041 (2018). [arXiv:1805.04697 [hep-ph]]

    Article  ADS  Google Scholar 

  56. İ. Şahin, B. Şahin, Phys. Rev. D 86, 115001 (2012). [arXiv:1211.3100 [hep-ph]]

  57. A. Senol, M. Köksal, Phys. Lett. B 742, 143–148 (2015). [arXiv:1410.3648 [hep-ph]]

    Article  ADS  Google Scholar 

  58. P. A. Zyla et al. [Particle Data Group], Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Köksal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spor, S., Köksal, M. Sensitivity analysis for the anomalous \(W^+W^-\gamma \) couplings at the LHeC and the FCC-he. Eur. Phys. J. Plus 137, 80 (2022). https://doi.org/10.1140/epjp/s13360-021-02224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02224-y

Navigation