Skip to main content
Log in

Pairwise and higher-order statistical correlations in excited states of quantum oscillator systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Pairwise and higher-order statistical correlations are examined in excited states of quantum oscillator systems, in position, and in momentum space. Measures from information theory, and those based on higher-order moments of the distribution, are used to quantify the correlations. Transition points are observed in the pairwise measures as the intensity of the interaction potential is varied. The presence of these points in a particular space, is governed by the symmetry of the wave function, and the attractive or repulsive nature of the interaction potentials. Crossover points in the higher-order measures are also present, where the interaction information transits from positive to negative values as the intensity of the interaction potential increases. The interpretation is that the dominance of synergic interactions depends on the intensity of the potential. The appearance of these crossover points in a particular representation is determined by the nature of the interaction potential, and not by the symmetry of the wave function. The magnitudes of the interaction potentials at these transition and crossover points, in each space, are shown to be a consequence of a relation which establishes a functional equivalence between the wave functions in each representation. Differences in the correlation characteristics of excited and ground states are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Panzeri, S.R. Schultz, A. Treves, E.T. Rolls, Correlations and the encoding of information in the nervous system. Proc. R. Soc. Lond. B 266, 1001–1012 (1999). https://doi.org/10.1098/rspb.1999.0736

    Article  Google Scholar 

  2. E. Schneidman, W. Bialek, M.J. Berry, Synergy, redundancy, and independence in population codes. J. Neurosci. 23(37), 11539–11553 (2003). https://doi.org/10.1523/JNEUROSCI.23-37-11539.2003

    Article  Google Scholar 

  3. P.E. Latham, S. Nirenberg, Synergy, redundancy, and independence in population codes, revisited. J. Neurosci. 25(21), 5195–5206 (2005). https://doi.org/10.1523/JNEUROSCI.5319-04.2005

    Article  Google Scholar 

  4. B.J. Killian, J.Y. Kravitz, M.K. Gibson, Extraction of configurational entropy from molecular simulations via an expansion approximation. J. Chem. Phys. 127(2), 024107 (2007). https://doi.org/10.1063/1.2746329

    Article  ADS  Google Scholar 

  5. M. Beraha, A. B. Metelli, M. Papini, A. Tirinzoni, and M. Restelli. Feature selection via Mutual Information: New theoretical insights, in 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, 2019. https://doi.org/10.1109/IJCNN.2019.8852410

  6. E.P. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932). https://doi.org/10.1007/978-3-642-59033-7_9

    Article  ADS  MATH  Google Scholar 

  7. W. Kutzelnigg, G. del Re, G. Bertier, Correlation coefficients for electronic wave functions. Phys. Rev 172, 49–59 (1968). https://doi.org/10.1103/PhysRev.172.49

    Article  ADS  Google Scholar 

  8. A.J. Thakkar, V.H. Smith Jr., Statistical electron correlation coefficients for the five lowest states of the heliumlike ions. Phys. Rev. A 23, 473 (1981). https://doi.org/10.1103/PhysRevA.23.473

    Article  ADS  Google Scholar 

  9. P.-O. Löwdin, Quantum theory of many-particle systems. III. extension of the Hartree–Fock scheme to include degenerate systems and correlation effects. Phys. Rev. 97, 1509 (1955). https://doi.org/10.1103/PhysRev.97.1509

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  MATH  Google Scholar 

  11. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, New York, 1991)

    Book  Google Scholar 

  12. S.R. Gadre, S.B. Sears, S.J. Chakravorty, R.D. Bendale, Some novel characteristics of atomic information entropies. Phys. Rev. A 32(5), 2602–2606 (1985). https://doi.org/10.1103/PhysRevA.32.2602

    Article  ADS  Google Scholar 

  13. A. Grassi, G.M. Lombardo, N.H. March, R. Pucci, 1/Z expansion, correlation energy, and Shannon entropy of heavy atoms in nonrelativistic limit. Int. J. Quantum Chem. 69(6), 721–726 (1998). https://doi.org/10.1002/(SICI)1097-461X(1998)69:6<721::AID-QUA4>3.0.CO;2-X

  14. P. Fuentealba, J. Melin, Atomic spin-density polarization index and atomic spin-density information entropy distance. Int. J. Quantum Chem. 90, 334 (2002). https://doi.org/10.1002/qua.994

    Article  Google Scholar 

  15. Q. Shi, S. Kais, Finite size scaling for the atomic Shannon-information entropy. J. Chem. Phys. 121(12), 5611–5617 (2004). https://doi.org/10.1063/1.1785773

    Article  ADS  Google Scholar 

  16. R. Atre, A. Kumar, N. Kumar, P.K. Panigrahi, Quantum-information entropies of the eigenstates and the coherent state of the Pöschl–Teller potential. Phys. Rev. A 69, 052107 (2004). https://doi.org/10.1103/PhysRevA.69.052107

    Article  ADS  Google Scholar 

  17. K.D. Sen, Characteristic features of Shannon information entropy of confined atoms. J. Chem. Phys. 123, 074110 (2005)

    Article  ADS  Google Scholar 

  18. KCh. Chatzisavvas, Ch.C. Moustakidis, C.P. Panos, Information entropy, information distances, and complexity in atoms. J. Chem. Phys. 123, 174111 (2005). https://doi.org/10.1063/1.2121610

  19. Z. Huang, S. Kais, Entanglement as measure of electron-electron correlation in quantum chemistry calculations. Chem. Phys. Lett. 413, 1 (2005). https://doi.org/10.1016/j.cplett.2005.07.045

    Article  ADS  Google Scholar 

  20. A.V. Luzanov, O.V. Prezhdo, High-order entropy measures and spin-free quantum entanglement for molecular problems. Mol. Phys. 105, 2879 (2007). https://doi.org/10.1080/00268970701725039

    Article  ADS  Google Scholar 

  21. L. M. Ghiringhelli, I. P. Hamilton, L. Delle Site, Interacting electrons, spin statistics, and information theory. J. Chem. Phys. 132(014106)(2010). https://doi.org/10.1063/1.3280953

  22. K. Pineda-Urbina, R.D. Guerrero, A. Reyes, Z. Gómez-Sandoval, R. Flores-Moreno, Shape entropy’s response to molecular ionization. J. Mol. Model. 19, 1677 (2013). https://doi.org/10.1007/s00894-012-1725-4

  23. Á. Nagy, Shannon entropy density as a descriptor of Coulomb systems. Chem. Phys. Lett. 556(29), 355–358 (2013). https://doi.org/10.1016/j.cplett.2012.11.065

    Article  ADS  Google Scholar 

  24. G.H. Sun, S.H. Dong, N. Saad, Quantum information entropies for an asymmetric trigonometric Rosen-Morse potential. Ann. Phys. 525(12), 934–943 (2013). https://doi.org/10.1002/andp.201300089

    Article  MathSciNet  Google Scholar 

  25. A.J. Fotue, S.C. Kenfack, M. Tiotsup, N. Issofa, A.V. Wirngo, M.P. Tabue Djemmo, H. Fotsin, L.C. Fai, Shannon entropy and decoherence of bound magnetopolaron in a modified cylindrical quantum dot. Mod. Phys. Lett. B 2929, 1550241 (2015). https://doi.org/10.1142/S0217984915502413

  26. C.H. Lin, Y.K. Ho, Shannon information entropy in position space for two-electron atomic systems. Chem. Phys. Lett. 633(11–12), 261–264 (2015). https://doi.org/10.1016/j.cplett.2015.05.029

    Article  ADS  Google Scholar 

  27. L. Delle Site, Shannon entropy and many-electron correlations: Theoretical concepts, numerical results, and Collins conjecture. Int. J. Quantum Chem. 115(19), 1396–1404 (2015). https://doi.org/10.1002/qua.24823

  28. N. Mukerjee, A.K. Roy, Quantum confinement in an asymmetric double-well potential through energy analysis and information entropic measure. Ann. Phys. 528(5), 412–433 (2016). https://doi.org/10.1002/andp.201500301

    Article  Google Scholar 

  29. M. Ghafourian, H. Hassanabadi, Shannon information entropies for the three-dimensional Klein-Gordon problem with the Poschl-Teller potential. J. Korean Phys. Soc. 68(11), 1267–1271 (2016). https://doi.org/10.3938/jkps.68.1267

    Article  ADS  Google Scholar 

  30. S.A. Najafizade, H. Hassanabadi, S. Zarrinkamar, Nonrelativistic Shannon information entropy for Kratzer potential. Chin. Phys. B 25(4), 040301 (2016). https://doi.org/10.1088/1674-1056/25/4/040301

    Article  Google Scholar 

  31. A. Ghosal, N. Mukherjee, A.K. Roy, Information entropic measures of a quantum harmonic oscillator in symmetric and asymmetric confinement within an impenetrable box. Ann. Phys. (Berlin) 528, 796 (2016). https://doi.org/10.1002/andp.201600121

    Article  ADS  Google Scholar 

  32. O. Olendski, Theory of the Robin quantum wall in a linear potential. I. Energy spectrum, polarization and quantum-information measures. Ann. Phys. (Berlin) 528(865)(2016). https://doi.org/10.1002/andp.201600080

  33. A. Boumali, M. Labidi, Shannon entropy and Fisher information of the one-dimensional Klein-Gordon oscillator with energy-dependent potential. Mod. Phys. Lett. A 33(06), 1850033 (2018). https://doi.org/10.1142/S0217732318500335

    Article  ADS  MathSciNet  Google Scholar 

  34. W.S. Nascimento, F.V. Prudente, Shannon entropy: a study of confined hydrogenic-like atoms. Chem. Phys. Lett. 691, 401–407 (2018). https://doi.org/10.1016/j.cplett.2017.11.048

    Article  ADS  Google Scholar 

  35. C.A. Onate, M.C. Onyeaju, E.E. Ituen, A.N. Ikot, O. Ebomwonyi, J.O. Okoro, K.O. Dopamu, Eigensolutions, Shannon entropy and information energy for modified Tietz-Hua potential. Indian J. Phys. 92(4), 0974–9845 (2018). https://doi.org/10.1007/s12648-017-1124-x

    Article  Google Scholar 

  36. N. Flores-Gallegos, On the calculations of Shannon’s entropy in atoms and molecules I: the continuous case in position and momentum spaces. Chem. Phys. Lett. 720, 1–6 (2019). https://doi.org/10.1016/j.cplett.2019.01.049

  37. S. López-Rosa, A.L. Martín, J. Antolín, J.C. Angulo, Electron-pair entropic and complexity measures in atomic systems. Int. J. Quantum Chem. 119(7), e25861 (2019). https://doi.org/10.1002/qua.25861

    Article  Google Scholar 

  38. M.A. Martínez-Sánchez, R. Vargas, J. Garza, Shannon entropy for the Hydrogen atom confined by four different potentials. Quantum Rep. 1, 208–218 (2019). https://doi.org/10.3390/quantum1020018

    Article  Google Scholar 

  39. I.V. Toranzo, D. Puertas-Centeno, N. Sobrino, J.S. Dehesa, Analytical Shannon information entropies for all discrete multidimensional hydrogenic states. Int. J. Quantum Chem. 120(2), e26077 (2020). https://doi.org/10.1002/qua.26077

    Article  Google Scholar 

  40. E.V. Ludeña, F.J. Torres, M. Becerra, L. Rincón, S. Liu, Shannon entropy and Fisher information from a non-Born-Oppenheimer perspective. J. Phys. Chem. A 124(2), 386–394 (2020). https://doi.org/10.1021/acs.jpca.9b10503

    Article  Google Scholar 

  41. I. Nasser, A. Abdel-Hady, Fisher information and Shannon entropy calculations for two-electron systems. Can. J. Phys. 98(8), 784–789 (2020). https://doi.org/10.1139/cjp-2019-0391

    Article  ADS  Google Scholar 

  42. S. Subhasish, J. Jobin, Shannon entropy as a predictor of avoided crossing in confined atoms. Int. J. Quantum Chem. 120(22), e26077 (2020). https://doi.org/10.1002/qua.26374

    Article  Google Scholar 

  43. C.O. Edet, A.N. Ikot, Shannon information entropy in the presence of magnetic and Aharanov–Bohm (AB) fields. Eur. Phys. J. Plus 136(4), 2190–5444 (2021). https://doi.org/10.1140/epjp/s13360-021-01438-4

    Article  Google Scholar 

  44. E. Cruz, N. Aquino, V. Prasad, Localization-delocalization of a particle in a quantum corral in presence of a constant magnetic field. Eur. Phys. J. D 75(3), 1434–6079 (2021). https://doi.org/10.1140/epjd/s10053-021-00119-2

    Article  Google Scholar 

  45. W. Beckner, Inequalities in Fourier analysis. Ann. Math. 102(1), 159–182 (1975). https://doi.org/10.2307/1970980

    Article  MathSciNet  MATH  Google Scholar 

  46. I. Bialynicki-Birula, J. Mycielski, Uncertainty relations for information entropy in wave mechanics. J. Commun. Math. Phys. 44(2), 129–132 (1975). https://doi.org/10.1007/BF01608825

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Hertz, N.J. Cerf, Continuous-variable entropic uncertainty relations. J. Phys. A Math. Theor. 52, 173001 (2019). https://doi.org/10.1088/1751-8121/ab03f3

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Meucci, Risk and Asset Allocation (Springer, Berlin, 2005)

    Book  Google Scholar 

  49. S. Watanabe, Information theoretical analysis of multivariate correlation. IBM J. Res. Dev. 4(1), 66–82 (1960). https://doi.org/10.1147/rd.41.0066

    Article  MathSciNet  MATH  Google Scholar 

  50. T.S. Han, Multiple mutual informations and multiple interactions in frequency data. Inf. Control 46(1), 26–45 (1980). https://doi.org/10.1016/S0019-9958(80)90478-7

    Article  MathSciNet  MATH  Google Scholar 

  51. S.J.C. Salazar, H.G. Laguna, R.P. Sagar, Statistical correlation measures from higher-order moments in quantum oscillator systems. Adv. Theory Simul. (2021). https://doi.org/10.1002/adts.202000322

    Article  Google Scholar 

  52. W.J. McGill, Multivariate information transmission. Psychometrika 19(2), 97–116 (1954). https://doi.org/10.1007/BF02289159

    Article  MATH  Google Scholar 

  53. N.J. Cerf, C. Adami, Entropic Bell inequalities. Phys. Rev. A 55(5), 3371–3374 (1997). https://doi.org/10.1103/PhysRevA.55.3371

    Article  ADS  MathSciNet  Google Scholar 

  54. H. Matsuda, Physical nature of higher-order mutual information: intrinsic correlations and frustration. Phys. Rev. E 62(3), 3096–3102 (2000). https://doi.org/10.1103/PhysRevE.62.3096

    Article  ADS  Google Scholar 

  55. H. Matsuda, Information theoretic characterization of frustrated systems. Physica A 294(1–2), 180–190 (2001). https://doi.org/10.1016/S0378-4371(01)00039-5

    Article  ADS  MATH  Google Scholar 

  56. T. Kolda, B. Bader, Tensor decompositions and applications. SIAM Rev. 3(51), 455–500 (2009). https://doi.org/10.1137/07070111X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. E. Jondeau, E. Jurczenko, M. Rockinger, Moment component analysis: an illustration with international stock markets. J. Bus. Econ. Stat. 36(4), 576–598 (2018). https://doi.org/10.1080/07350015.2016.1216851

    Article  MathSciNet  Google Scholar 

  58. E. Jondeau, M. Rockinger, Optimal portfolio allocation under higher moments. Eur. Financ. Manag. 12(1), 29–55 (2006). https://doi.org/10.1111/j.1354-7798.2006.00309.x

    Article  Google Scholar 

  59. G.M. Athayde, R.G. Flôres Jr., Finding a maximum skewness portfolio. A general solution to three-moments portfolio choice. J. Econ. Dyn. Control 28(7), 1335–1352 (2004). https://doi.org/10.1016/S0165-1889(02)00084-2

  60. H.T. Peng, Y.K. Ho, Statistical correlations of the N-particle Moshinsky model. Entropy 17(4), 012502 (2015). https://doi.org/10.3390/e17041882

    Article  MathSciNet  Google Scholar 

  61. P.A. Bouvrie, A.P. Majtey, A.R. Plastino, M.P. Sánchez, J.S. Dehesa, Quantum entanglement in exactly soluble atomic models: the Moshinsky model with three electrons, and with two electrons in a uniform magnetic field. Eur. Phys. J. D 66, 15 (2012). https://doi.org/10.1140/epjd/e2011-20417-4

    Article  ADS  Google Scholar 

  62. S.J.C. Salazar, H.G. Laguna, R.P. Sagar, Higher-order information measures from cumulative densities in continuous variable quantum systems. Quantum Rep. 2(4), 560–578 (2020). https://doi.org/10.3390/quantum2040039

    Article  Google Scholar 

  63. S.J.C. Salazar, H.G. Laguna, R.P. Sagar, Higher-order statistical correlations in three-particle quantum systems with harmonic interactions. Phys. Rev. A 101, 042105 (2020). https://doi.org/10.1103/PhysRevA.101.042105

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

S.J.C.S. would like to thank CONACyT for a graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto G. Laguna.

Appendix

Appendix

The similarity in behaviour between mutual information and cokurtoses measures at the two and three variable levels has been reported for the \(\left| 000\right\rangle \) symmetric and \(\left| 001\right\rangle \) antisymmetric ground states in position space [51]. Mutual information is taken from information theory while the cokurtosis comes from a moments-based approach. Although distinct, both are thought to measure the nonlinear correlations. The question remains, if the similarity that was observed in position space is carried through to momentum space. Thus, we illustrate the behaviours of these measures in momentum space for the ground states. This information supplements that presented for the excited states in the body of this work.

Figure 12 presents a comparison of the pairwise measures. First, the similarity between the \(I_p\) and \(Cok(p_1,p_2)\) measures is striking in all cases. The minimum that is present in \(I_p\) in the \(\left| 001\right\rangle \) antisymmetric state with repulsive potential, is also present in the \(Cok(p_1,p_2)\) measure. In this state, \(\tau _p\) is negative-valued at smaller \(\lambda _-\), and transits to positive values as \(\lambda _-\) increases. This transition point is also detected by the minima in \(I_p\) and in \(Cok(p_1,p_2)\), which occur in the same region. The position of these minima are shifted to smaller values as compared to the transition point.

Figure 13 presents the comparison of triple-wise and higher-order measures. All \(I_3^p\) measures are consistent in behaviour with \(Cok(p_1,p_2,p_3)\), except for the antisymmetric \(\left| 001\right\rangle \) state with attractive potential, whose cokurtosis displays a maximum. Note that the presence of the minimum in \(I_3^p\) for the \(\left| 001\right\rangle \) state with repulsive potential is also captured by a corresponding minimum in \(Cok(p_1,p_2,p_3)\) in the same region. There is also a striking resemblance between the higher-order interaction information, \(I_p^3\), and the \(\eta _p\) measure based on the cokurtoses. Note that \(\eta _p\) captures the positive to negative transition in \(I_p^3\), at larger \(\lambda _-\), in the \(\left| 001\right\rangle \) state with repulsive potential. We emphasize that the values of \(\lambda _-\) at this transition is distinct for each measure.

Fig. 12
figure 12

Behaviour of pairwise correlation measures vs. the intensity of an attractive or repulsive interaction potential in momentum space, for the \(\left| 001\right\rangle \) state (first, third rows), and the \(\left| 000\right\rangle \) one (second, fourth rows). The dashed magenta line corresponds to the limiting value of the repulsive potential, while the black dashed line (\(\lambda _-=0.5\)) corresponds to the transition point in the correlation coefficient

Fig. 13
figure 13

Behaviour of triple-wise correlation measures vs. the intensity of an attractive or repulsive interaction potential in momentum space, for the \(\left| 001\right\rangle \) state (first, third rows) and the \(\left| 000\right\rangle \) one (second, fourth rows). The dashed magenta line corresponds to the limiting value of the repulsive potential

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar, S.J.C., Laguna, H.G. & Sagar, R.P. Pairwise and higher-order statistical correlations in excited states of quantum oscillator systems. Eur. Phys. J. Plus 137, 19 (2022). https://doi.org/10.1140/epjp/s13360-021-02215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02215-z

Navigation