Skip to main content

Advertisement

Log in

Handling and dosimetry of laser-driven ion beams for applications

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The acceleration processes based on the coherent interaction of high-power lasers with matter are, by now, one of the most interesting topics in the field of particle acceleration, becoming day by day a real alternative to conventional approaches. Some of the extraordinary peculiarities of laser–matter interaction, such as the production of multi-species (gamma, X-rays, electrons, protons and ions), short-pulsed and intense beams are particularly attracting for many applications as well as for fundamental physics. In particular, laser-accelerated protons, if well controlled in terms of final energy spread, divergence and dose rate, could lead to investigate new research regimes in the field of medical physics, as well as in radiobiological applications. Many approaches are currently being developed aiming at optimizing the laser–target interaction mechanism and at collecting and selecting through dedicated transport beamlines the laser-accelerated proton beams in a future perspective to use them for the medical and radiobiological applications with a reduced uncertainty. An overview of the main parameters characterizing the laser-accelerated protons and of the transport, diagnostics and dosimetry solutions, currently adopted from the laser community, will be provided in this contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Macchi et al., Phys, Rev. Mod. Phys 85, 751 (2013)

    ADS  Google Scholar 

  2. T.M. Jeong et al., J. Korean Phys. Soc. 50, 34 (2007)

    Google Scholar 

  3. E.L. Clark et al., Phys. Rev. Lett. 84, 670 (2000)

    ADS  Google Scholar 

  4. A. Maksimchuk et al., Phys. Rev. Lett. 84, 4108 (2000)

    ADS  Google Scholar 

  5. R.A. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000)

    ADS  Google Scholar 

  6. A. Higginson et al., Nat. Commun. 9, 724 (2018)

    ADS  Google Scholar 

  7. D. Margarone et al., Quantum Beam Sci. 2, 8 (2018)

    ADS  Google Scholar 

  8. C. Richter et al., Med Phys, 37 (2010) 3292–3292

  9. S. Busold et al., Nucl. Instrum. Methods Phys. Res., Sect. A 740, 94–8 (2014)

    ADS  Google Scholar 

  10. MAP: The Munich-Centre for Advanced Photonics. https://www.munich-photonics.de/about-us/

  11. CALA-Centre for Advanced Laser Applications. https://www.cala-laser.de/

  12. BELLA: The Berkeley Lab Laser Accelerator. http://www.lbl.gov/community/ bella/

  13. A-SAIL Project-Queen’s University Belfast. https://www.qub.ac.uk/research- centres/A-SAILProject/

  14. U. Schramm et al., J. Phys.: Conf. Ser. 874, 012028 (2017)

    Google Scholar 

  15. https://apollonlaserfacility.cnrs.fr/

  16. http://texaspetawatt.ph.utexas.edu

  17. K. Kondo, Quantum Beam Sci. 1, 7 (2017). https://doi.org/10.3390/qubs1010007

    Article  Google Scholar 

  18. http://www.icuil.org

  19. F. Brandi et al., Appl. Sci. 11(14), 6358 (2021)

    Google Scholar 

  20. L. Gizzi et al., Sci. Rep. 11, 13728 (2021)

    ADS  Google Scholar 

  21. L. Volpe et al., High Power Laser Sci. Eng. 7, e25 (2019)

    Google Scholar 

  22. J.I. Apinaniz et al., Sci. Rep. 11, 6881 (2021)

    ADS  Google Scholar 

  23. P. Chaudhary et al., Front. Phys. 9, 624963 (2021)

    Google Scholar 

  24. T. Ziegler et al., Sci. Rep. 11, 7338 (2021)

    ADS  Google Scholar 

  25. T.F. Rosch et al., Rev. Sci. Instrum. 91, 063303 (2020)

    ADS  Google Scholar 

  26. P. Gibbon, Short Pulse Laser Interactions With Matter: An Introduction, 1st edn. (Imperial College Press, London, 2005)

    MATH  Google Scholar 

  27. F. Francis, Introduction to Plasma Physics and Controlled Fusion (Volume 1: Plasma Physics. Springer, 2nd edn.)

  28. M. Borghesi et al., Nucl. Inst. Methods Phys. Res. A 740, 6–9 (2014)

    ADS  Google Scholar 

  29. M. Passoni et al., Phys. Rev. E 69, 026411 (2004)

    ADS  Google Scholar 

  30. S.C. Wilks et al., Phys. Plasmas 8, 542 (2001)

    ADS  Google Scholar 

  31. H. Schwoerer et al., Nature 439, 445–448 (2006)

    ADS  Google Scholar 

  32. A.J. Mackinnon et al., Phys. Rev. Lett. 88, 215006 (2020)

    ADS  Google Scholar 

  33. J. Fuchs et al., Nat. Phys. 2, 48–54 (2006)

    Google Scholar 

  34. K. Zeil et al., New J. Phys. 12, 045015 (2010)

    ADS  Google Scholar 

  35. M. Borghesi et al., Fus. Sci. Technol. 49, 412–439 (2006)

    Google Scholar 

  36. F. Hanton et al., Sci. Rep. 9, 4471 (2019)

    ADS  Google Scholar 

  37. L. Manti et al., J. Instrum. 12(3), C03084 (2017)

    Google Scholar 

  38. G. Milluzzo et al., 4th European Advanced Accelerator Concepts Workshop (EAAC). J. Phys.: Conf. Ser. 1596(2020)

  39. D. Doria et al., AIP Adv. 2, 011209 (2012)

    ADS  Google Scholar 

  40. M. Durante et al., Br J. Radiol. 91, 20170628 (2018)

  41. M. Borghesi et al., Plasma Phys. Control. Fus. 43, A267–A276 (2001)

    Google Scholar 

  42. A.J. Mackinnon et al., Rev. Sci. Instrum. 75, 3531–6 (2004)

    ADS  Google Scholar 

  43. K. Krushelnick et al., IEEE Trans. Plasma Sci. 28, 1184–9 (2000)

    ADS  Google Scholar 

  44. A. Noda et al., Int. J. Laser Phys. 16, 647–53 (2006)

    ADS  Google Scholar 

  45. S. Fritzler et al., Appl. Phys. Lett. 83, 3039–41 (2003)

    ADS  Google Scholar 

  46. K.W.D. Ledingham et al., Science 300, 1107–11 (2003)

    ADS  Google Scholar 

  47. J.M. Ollinger et al., IEEE Signal Process. 43–55 (1997)

  48. M. Passoni et al. Special Issue Featuring the Invited Talks from the 46th EPS Conference on Plasma Physics, Vol. 62, pp. 1 (2019)

  49. M. Roth et al., Phys. Rev. Lett. 86, 436 (2001)

    ADS  Google Scholar 

  50. V.Y. Bychenkov et al., Plasma Phys. Rep. 27, 1017–1020 (2001)

    ADS  Google Scholar 

  51. J.S. Green et al., Appl. Phys. Lett. 104, 214101 (2014)

    ADS  Google Scholar 

  52. G.A.P. Cirrone et al., Front. Oncol. 7, 247 (2017)

    Google Scholar 

  53. T. Chagovets et al., Appl. Sci. 11, 1680 (2021)

    Google Scholar 

  54. N.P. Dover et al., High Energy Density Phys. 37, 1008472 (2020)

    Google Scholar 

  55. M. Noaman-Ul-Haq et al., Phys. Rev. Accelerators Beams 20, 41301 (2017)

    ADS  Google Scholar 

  56. D. Margarone et al., Phys. Rev. Lett. 109, 234801 (2012)

    ADS  Google Scholar 

  57. L. Giuffrida et al., Phys. Rev. Accel. Beams 20, 081301 (2017)

    ADS  Google Scholar 

  58. I. Prencipe et al., Plasma Phys. Control. Fusion 58, 034019 (2016)

    ADS  Google Scholar 

  59. S. Bedacht et al., GSI Scientific Report, PNI-PP-25, p. 458 (2012)

  60. L. Obst et al., Sci. Rep. 7, 10248 (2017)

    ADS  Google Scholar 

  61. S. Garcia et al., Laser Part. Beams 32, 569 (2014)

    ADS  Google Scholar 

  62. D. Margarone et al., Phys. Rev. X 6, 041030 (2016)

    Google Scholar 

  63. S.D. Kraft et al., Plasma Phys. Control. Fusion 60, 044010 (2018)

    ADS  Google Scholar 

  64. S. Kar et al., Nat. Commun. 7, 10792 (2016)

    ADS  Google Scholar 

  65. H. Ahmed et al., Sci. Rep. 7, 10891 (2017)

    ADS  Google Scholar 

  66. M. Bardon et al., Plasma Phys. Control. Fus. 62, 125019 (2020)

    ADS  Google Scholar 

  67. H. Ahmed et al., Sci. Rep. 11, 699 (2021)

    ADS  Google Scholar 

  68. Particle Therapy Co-Operative Group. http://www.ptcog.ch/

  69. C.M. Ma et al., Laser Phys. 16, 639–646 (2006)

    ADS  Google Scholar 

  70. S. Schell, J.J. Wilkens, Med. Phys. 37(10), 5330–5340 (2010)

    Google Scholar 

  71. K.M. Hofmann et al., J. Biophotonics 5(11–12), 903–911 (2012)

  72. J. Metzkes et al., Nucl. Instrum. Methods Phys. Res. A. 653(1), 172–175 (2011)

    ADS  Google Scholar 

  73. C. Richter et al., Phys. Med. Biol. 56, 1529–1543 (2011)

    Google Scholar 

  74. M. Schürer et al., Biomed. Technol. 57, 62–65 (2012)

    Google Scholar 

  75. J. Metzkes et al., Rev. Sci. Instr. 83, 123301 (2012)

    ADS  Google Scholar 

  76. K. Zeil et al., Appl. Phys. B 110, 437–444 (2013)

    ADS  Google Scholar 

  77. A. Yogo et al., Appl. Phys. Lett. 98, 053701 (2011)

    ADS  Google Scholar 

  78. G.A.P. Cirrone et al., Nucl. Instrum. Methods Phys. Res. A. 796, 99–103 (2015)

    ADS  Google Scholar 

  79. F. Schillaci et al., JINST 11, T07005 (2016)

    ADS  Google Scholar 

  80. F. Schillaci et al., Nucl. Instrum. Methods Phys. Res. A. 837, 80–87 (2016)

    ADS  Google Scholar 

  81. L. Pommarel et al., Phys. Rev. Accel. Beams 20, 032801 (2017)

    ADS  Google Scholar 

  82. F.E. Brack et al., Sci. Rep. 10, 9118 (2020)

    ADS  Google Scholar 

  83. G.A.P. Cirrone et al., Nuovo Cimento Soc. Ital. Fis. C 43(1), A15 (2020)

    Google Scholar 

  84. W. Luo et al., Med. Phys. 32(3), 794–806 (2005)

    Google Scholar 

  85. U. Schramm et al., J. Phys. Conf. Ser. 874, 012028 (2017)

    Google Scholar 

  86. V. Scuderi et al., Nucl. Instrum. Methods Phys. Res. A. 740, 87–93 (2014)

    ADS  Google Scholar 

  87. P.R. Bolton et al, Physica Medica, 30, (2014) 255e270

  88. L. Karsch et al. Proc. of 356 SPIE, 95151J-1 (2012)

  89. X.H. Xu et al., Rev. Sci. Instrum. 90, 3 (2019)

    Google Scholar 

  90. G.A.P. Cirrone et al., J. Instr. 15, C04029 (2020)

    Google Scholar 

  91. M. Galimberti et al., Rev. Sci. Instrum. 76, 053303 (2005)

    ADS  Google Scholar 

  92. K. Yamanouchi, D. Charalambidis, Progress in Ultrafast Intense Laser Science XV (Springer, Cham, 2020)

    Google Scholar 

  93. S. Valliere et al., Rev. Sci. Instrum. 91, 103303 (2020)

    ADS  Google Scholar 

  94. F. Schillaci et al., J. Instrum. 9, T10003 (2014)

    Google Scholar 

  95. H. Daniel et al., Sci. Rep. 9, 67214 (2019)

    Google Scholar 

  96. K. Parodi et al., Mod. Phys. Lett. A 30, 1540025 (2015)

    ADS  Google Scholar 

  97. J. Metzkes et al., Rev. Sci. Instrum. 87, 083310 (2016)

    ADS  Google Scholar 

  98. G. Milluzzo et al., Rev. Sci. Instrum. 90, 083303 (2019)

    ADS  Google Scholar 

  99. F. Romano et al., J. Phys.: Conf. Ser. 1662, 012028 (2020)

    Google Scholar 

  100. S.D. Kraft et al., New J. Phys. 12, 085003 (2010)

    ADS  Google Scholar 

  101. G.A.P. Cirrone et al., Proceedings of IPAC2016 (Korea, Busan, 2016), pp. 2077–2081

  102. F. Romano et al., Nucl. Instrum. Methods Phys. Res. A 829, 153–158 (2016)

    ADS  Google Scholar 

  103. J.W. Boag, T. Wilson, Br. J. Appl. Phys. 3, 222–229 (1952)

    ADS  Google Scholar 

  104. L. Calabretta et al., Sixteenth International Conference on Cyclotrons and Their Applications (2001)

Download references

Acknowledgements

The authors wish to thank the Interdisciplinary Committee of the Istituto Italiano di Fisica Nucleare (INFN) for the financial support received in the realization of the transport and diagnostic devices related to the ELIMAIA/ELIMED activity. This work was also supported by European Structural and Investment Fund and the Czech Ministry of Education, Youth and Sports (Project International mobility MSCA-IF IV FZU - CZ.02.2.69/0.0/0.0/20-079/0017754).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Petringa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milluzzo, G., Petringa, G., Catalano, R. et al. Handling and dosimetry of laser-driven ion beams for applications. Eur. Phys. J. Plus 136, 1170 (2021). https://doi.org/10.1140/epjp/s13360-021-02134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02134-z

Navigation