Skip to main content
Log in

Vibration and stability analysis of fluid-conveying sandwich micro-pipe with magnetorheological elastomer core, considering modified couple stress theory and geometrical nonlinearity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The main goal of this paper is to investigate the size-dependent nonlinear vibration and stability response of fluid-conveying sandwich micro-pipes exploiting magnetorheological elastomer (MRE) as a smart core. Considering the geometrical nonlinearity, based on von-Karman assumption, Euler–Bernoulli theory is employed for mathematical formulation of the problem. Additionally, modified couple stress theory (MCST) is utilized as a size-dependent theory to reach an accurate model. Kerwin assumption is taken into account, and Hamiltonian’s approach is hired to derive the coupled and nonlinear governing equations and boundary conditions of the system. For solution procedure, differential quadrature method (DQM) is used to discretize the governing equations and corresponding boundary conditions. Thereafter, the obtained algebraic nonlinear equations and boundary conditions are solved numerically to acquire the nonlinear eigenvalues of the system which could be analyzed to discuss the stability and critical flow velocity of the system. In numerical analysis, a detailed examination is conducted to elucidate the exact influences of the main intrinsic characteristics of MRE core (i.e., magnetic intensity and MRE core thickness) on vibrational response of the system. Accordingly, the main effects of the MRE layer on vibrational properties including frequency, loss factor, critical flow velocity and stability region for both cantilever and clamped–clamped pipes are investigated. The results reveal the substantial effect of the MRE core on the vibrational characteristics and stability of the system. The boosting effect of the MRE core layer on the stability of the system was disclosed. The results declare that, in addition to the magnetic intensity as a controlling parameter, the MRE core thickness is another important factor in vibration and stability characteristics of the system. Totally, the research reveals that the fabulous properties of the MRE layers could be considered and exploited in designing the fluid-conveying micro-pipes to obtain an efficient, smart and adaptive system response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. D. Wang, C. Bai, H. Zhang, Nonlinear vibrations of fluid-conveying FG cylindrical shells with piezoelectric actuator layer and subjected to external and piezoelectric parametric excitations. Compos. Struct. 248, 112437 (2020)

    Google Scholar 

  2. A. Amiri, R. Talebitooti, L. Li, Wave propagation in viscous-fluid-conveying piezoelectric nanotubes considering surface stress effects and Knudsen number based on nonlocal strain gradient theory. Eur. Phys. J. Plus. 133(7), 252 (2018)

    Google Scholar 

  3. A. Amiri, R. Vesal, R. Talebitooti, Flexoelectric and surface effects on size-dependent flow-induced vibration and instability analysis of fluid-conveying nanotubes based on flexoelectricity beam model. Int. J. Mech. Sci. 156, 474–485 (2019)

    Google Scholar 

  4. R.B. Vemuluri, V. Rajamohan, P.E. Sudhagar, Structural optimization of tapered composite sandwich plates partially treated with magnetorheological elastomers. Compos. Struct. 200, 258–276 (2018)

    Google Scholar 

  5. S. Bornassi, H.M. Navazi, Torsional vibration analysis of a rotating tapered sandwich beam with magnetorheological elastomer core. J. Intell. Mater. Syst. Struct. 29(11), 2406–2423 (2018)

    Google Scholar 

  6. H. Akhavan, M. Ghadiri, A. Zajkani, A new model for the cantilever MEMS actuator in magnetorheological elastomer cored sandwich form considering the fringing field and Casimir effects. Mech. Syst. Signal Process. 121, 551–561 (2019)

    ADS  Google Scholar 

  7. A. GhorbanpourArani, H. BabaAkbarZarei, M. Eskandari, P. Pourmousa, Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field. J. Sandw. Struct. Mater. 21(7), 2194–2218 (2019)

    Google Scholar 

  8. R. Selvaraj, M. Ramamoorthy, Dynamic analysis of laminated composite sandwich beam containing carbon nanotubes reinforced magnetorheological elastomer. J. Sandw. Struct. Mater. (2020). https://doi.org/10.1177/1099636220905253

    Article  Google Scholar 

  9. Q. Sun, J.-X. Zhou, L. Zhang, An adaptive beam model and dynamic characteristics of magnetorheological materials. J. Sound Vib. 261(3), 465–481 (2003)

    ADS  Google Scholar 

  10. F. de Souza Eloy, G.F. Gomes, A.C. Ancelotti Jr., S.S. da Cunha Jr., A.J.F. Bombard, D.M. Junqueira, A numerical-experimental dynamic analysis of composite sandwich beam with magnetorheological elastomer honeycomb core. Compos. Struct. 209, 242–257 (2019)

    Google Scholar 

  11. H. Li, W. Wang, X. Wang, Q. Han, J. Liu, Z. Qin, J. Xiong, Z. Guan, A nonlinear analytical model of composite plate structure with an MRE function layer considering internal magnetic and temperature fields. Compos. Sci. Technol. 200, 108445 (2020)

    Google Scholar 

  12. H. Dai, L. Wang, Q. Ni, Dynamics of a fluid-conveying pipe composed of two different materials. Int. J. Eng. Sci. 73, 67–76 (2013)

    Google Scholar 

  13. Y.Q. Wang, Y.H. Wan, J.W. Zu, Nonlinear dynamic characteristics of functionally graded sandwich thin nanoshells conveying fluid incorporating surface stress influence. Thin Wall. Struct. 135, 537–547 (2019)

    Google Scholar 

  14. A.-R. AsghariArdalani, A. Amiri, R. Talebitooti, M.S. Safizadeh, On wave dispersion characteristics of fluid-conveying smart nanotubes considering surface elasticity and flexoelectricity approach. Proc. Inst. Mech. Eng. C-J Mech. (2020). https://doi.org/10.1177/0954406220965611

    Article  Google Scholar 

  15. A.E. Mamaghani, S. Khadem, S. Bab, Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn. 86(3), 1761–1795 (2016)

    MATH  Google Scholar 

  16. F. Liang, X.-D. Yang, Y.-J. Qian, W. Zhang, Transverse free vibration and stability analysis of spinning pipes conveying fluid. Int. J. Mech. Sci. 137, 195–204 (2018)

    Google Scholar 

  17. A. Amiri, A. Masoumi, R. Talebitooti, Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field. Int. J. Mech. Mater. Des. 16, 569–588 (2020)

    Google Scholar 

  18. H.-C. Li, L.-L. Ke, Size-dependent vibration and dynamic stability of AFG microbeams immersed in fluid. Thin Wall. Struct. 161, 107432 (2021)

    Google Scholar 

  19. Y. Wang, Y. Wei, Internal resonance analysis of a fluid-conveying tube resting on a nonlinear elastic foundation. Eur. Phys. J. Plus. 135(4), 1–38 (2020)

    ADS  Google Scholar 

  20. X. Zhu, Z. Lu, Z. Wang, L. Xue, A. Ebrahimi-Mamaghani, Vibration of spinning functionally graded nanotubes conveying fluid. Eng. Comput. 2020, 1–22 (2020)

    Google Scholar 

  21. F. Zheng, Y. Lu, A. Ebrahimi-Mamaghani, Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid. Waves Random Complex Media 2020, 1–39 (2020)

    Google Scholar 

  22. M. Tang, Q. Ni, L. Wang, Y. Luo, Y. Wang, Nonlinear modeling and size-dependent vibration analysis of curved microtubes conveying fluid based on modified couple stress theory. Int. J. Eng. Sci. 84, 1–10 (2014)

    MathSciNet  MATH  Google Scholar 

  23. A. Amiri, I. Pournaki, E. Jafarzadeh, R. Shabani, G. Rezazadeh, Vibration and instability of fluid-conveyed smart micro-tubes based on magneto-electro-elasticity beam model. Microfluid. Nanofluid. 20(2), 38 (2016)

    Google Scholar 

  24. S. Ahangar, G. Rezazadeh, R. Shabani, G. Ahmadi, A. Toloei, On the stability of a microbeam conveying fluid considering modified couple stress theory. Int. J. Mech. Mater. Des. 7(4), 327 (2011)

    Google Scholar 

  25. L. Wang, H. Liu, Q. Ni, Y. Wu, Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. Int. J. Eng. Sci. 71, 92–101 (2013)

    MathSciNet  MATH  Google Scholar 

  26. A. Setoodeh, S. Afrahim, Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory. Compos. Struct. 116, 128–135 (2014)

    Google Scholar 

  27. A.G. Arani, E. Haghparast, M.H. Rarani, Z.K. Maraghi, Strain gradient shell model for nonlinear vibration analysis of visco-elastically coupled Boron Nitride nano-tube reinforced composite micro-tubes conveying viscous fluid. Comput. Mater. Sci. 96, 448–458 (2015)

    Google Scholar 

  28. B. Abbasnejad, R. Shabani, G. Rezazadeh, Stability analysis of a piezoelectrically actuated micro-pipe conveying fluid. Microfluid. Nanofluid. 19(3), 577–584 (2015)

    Google Scholar 

  29. B. Abbasnejad, G. Rezazadeh, R. Shabani, Stability analysis of a capacitive fgm micro-beam using modified couple stress theory. Acta Mech. Solida Sin. 26(4), 427–440 (2013)

    Google Scholar 

  30. F. Yang, A. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids. Struct. 39(10), 2731–2743 (2002)

    MATH  Google Scholar 

  31. G. Zhou, Q. Wang, Study on the adjustable rigidity of magnetorheological-elastomer-based sandwich beams. Smart Mater. Struct. 15(1), 59 (2005)

    ADS  Google Scholar 

  32. Z. Ying, Y. Ni, Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass. Smart Mater. Struct. 18(9), 095005 (2009)

    ADS  Google Scholar 

  33. B. Nayak, S. Dwivedy, K. Murthy, Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions. J. Sound Vib. 330(9), 1837–1859 (2011)

    ADS  Google Scholar 

  34. S. Aguib, A. Nour, H. Zahloul, G. Bossis, Y. Chevalier, P. Lançon, Dynamic behavior analysis of a magnetorheological elastomer sandwich plate. Int. J. Mech. Sci. 87, 118–136 (2014)

    Google Scholar 

  35. V.R. Babu, R. Vasudevan, Dynamic analysis of tapered laminated composite magnetorheological elastomer (MRE) sandwich plates. Smart Mater. Struct. 25(3), 035006 (2016)

    ADS  Google Scholar 

  36. S. Aguib, A. Nour, B. Benkoussas, I. Tawfiq, T. Djedid, N. Chikh, Numerical simulation of the nonlinear static behavior of composite sandwich beams with a magnetorheological elastomer core. Compos. Struct. 139, 111–119 (2016)

    Google Scholar 

  37. H. Navazi, S. Bornassi, H. Haddadpour, Vibration analysis of a rotating magnetorheological tapered sandwich beam. Int. J. Mech. Sci. 122, 308–317 (2017)

    Google Scholar 

  38. M. Hoseinzadeh, J. Rezaeepazhand, Dynamic stability enhancement of laminated composite sandwich plates using smart elastomer layer. J. Sandw. Struct. Mater. (2018). https://doi.org/10.1177/1099636218819158

    Article  Google Scholar 

  39. S. Bornassi, H. Navazi, H. Haddadpour, Aeroelastic instability analysis of a turbomachinery cascade with magnetorheological elastomer based adaptive blades. Thin Wall. Struct. 130, 71–84 (2018)

    Google Scholar 

  40. R.B. Vemuluri, V. Rajamohan, A.B. Arumugam, Dynamic characterization of tapered laminated composite sandwich plates partially treated with magnetorheological elastomer. J. Sandw. Struct. Mater. 20(3), 308–350 (2018)

    Google Scholar 

  41. C. Wu, Q. Zhang, X. Fan, Y. Song, Q. Zheng, Smart magnetorheological elastomer peristaltic pump. J. Intell. Mater. Syst. Struct. 30(7), 1084–1093 (2019)

    Google Scholar 

  42. S. Aguib, A. Nour, T. Djedid, G. Bossis, N. Chikh, Forced transverse vibration of composite sandwich beam with magnetorheological elastomer core. J. Mech. Sci. Technol 30(1), 15–24 (2016)

    Google Scholar 

  43. M. Rambausek, K. Danas, Bifurcation of magnetorheological film–substrate elastomers subjected to biaxial pre-compression and transverse magnetic fields. Int. J. Non Linear Mech. 128, 103608 (2020)

    Google Scholar 

  44. A.G. Arani, T. Soleymani, Size-dependent vibration analysis of a rotating MR sandwich beam with varying cross section in supersonic airflow. Int. J. Mech. Sci. 151, 288–299 (2019)

    Google Scholar 

  45. M. Asgari, M.A. Kouchakzadeh, Aeroelastic characteristics of magneto-rheological fluid sandwich beams in supersonic airflow. Compos. Struct. 143, 93–102 (2016)

    Google Scholar 

  46. E.M. Kerwin Jr., Damping of flexural waves by a constrained viscoelastic layer. J. Acoust. Soc. 31(7), 952–962 (1959)

    ADS  Google Scholar 

  47. M. Rokn-Abadi, M. Yousefi, H. Haddadpour, M. Sadeghmanesh, Dynamic stability analysis of a sandwich beam with magnetorheological elastomer core subjected to a follower force. Acta Mech. 231(9), 3715–3727 (2020)

    Google Scholar 

  48. M. Fakhari, N. Saeedi, A. Amiri, Size-dependent vibration and instability of magneto-electro-elastic nano-scale pipes containing an internal flow with slip boundary condition. Int. J. Eng. 29(7), 995–1004 (2016)

    Google Scholar 

  49. L.-L. Ke, Y.-S. Wang, Z.-D. Wang, Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos. Struct. 94(6), 2038–2047 (2012)

    Google Scholar 

  50. A. Masoumi, A. Amiri, R. Vesal, G. Rezazadeh, Nonlinear static pull-in instability analysis of smart nano-switch considering flexoelectric and surface effects via DQM. Proc. Inst. Mech. Eng. C-J Mech. (2021). https://doi.org/10.1177/0954406221997481

    Article  Google Scholar 

  51. L. Yin, Q. Qian, L. Wang, Strain gradient beam model for dynamics of microscale pipes conveying fluid. Appl. Math. Model. 35(6), 2864–2873 (2011)

    MathSciNet  MATH  Google Scholar 

  52. M. Hosseini, R. Bahaadini, Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory. Int. J. Eng. Sci. 101, 1–13 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roohollah Talebitooti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, A., Talebitooti, R. Vibration and stability analysis of fluid-conveying sandwich micro-pipe with magnetorheological elastomer core, considering modified couple stress theory and geometrical nonlinearity. Eur. Phys. J. Plus 136, 1109 (2021). https://doi.org/10.1140/epjp/s13360-021-02117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02117-0

Navigation