Skip to main content
Log in

A study on the stress and vibration characteristics of laminated composite plates resting on elastic foundations using analytical and finite element solutions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper presents the stress and vibration analysis of advanced composites and sandwich plates supported by elastic foundations. An inter-laminar transverse shear stress continuous plate theory is used to model the deformation responses of the multilayered plates. This plate theory is a refinement of the classical plate theory and utilizes a trigonometric function to define the nonlinear behavior of the transverse shear strains across the thickness of the plates. Additionally, unit step functions are assumed along with some auxiliary variables to satisfy the piecewise continuity requirements of displacements. The deformation behavior of the elastic foundations is modeled using a two-parameter foundation model known as the Pasternak’s foundation. The equations of motion are derived using Hamilton’s principle for the dynamic problem which can also be reduced to a static problem by ignoring the effects of inertia. Two solution schemes are proposed: the Navier-based analytical method, and the finite element method for the spatial solutions of the displacement variables. Further, the solutions in time are obtained using Newmark’s time integration technique. Detailed parametric studies on static, free vibration and forced-vibration analysis of laminated composite plates are carried out to show the effects of the elastic foundations on the structural responses. It is concluded from the results that both analytical and finite element solutions are capable of accurately predicting the responses of composite plates supported by elastic foundations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. S. Qaderi, F. Ebrahimi, M. Vinyas, Dynamic analysis of multi-layered composite beams reinforced with graphene platelets resting on two-parameter viscoelastic foundation. Eur. Phys. J. Plus 134, 339 (2019)

    Article  Google Scholar 

  2. Z.X. Lei, L.W. Zhang, K.M. Liew, Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Compos. Struct. 127, 245–259 (2015)

    Article  Google Scholar 

  3. A.M. Zenkour, H.D. El-Shahrany, Frequency control of cross-ply magnetostrictive viscoelastic plates resting on Kerr-type elastic medium. Eur. Phys. J. Plus 136, 634 (2021)

    Article  Google Scholar 

  4. S.S. Akavci, H.R. Yerli, A. Dogan, The first order shear deformation theory for symmetrically laminated composite plates on elastic foundation. Arab. J. Sci. Eng. 32(2), 341 (2007)

    Google Scholar 

  5. H. Tanahashi, Pasternak model formulation of elastic displacements in the case of a rigid circular foundation. J. Asian Archit. Build. Eng. 6(1), 167–173 (2007)

    Article  Google Scholar 

  6. M. Alakel Abazid, 2D magnetic field effect on the thermal buckling of metal foam nanoplates reinforced with FG-GPLs lying on Pasternak foundation in humid environment. Eur. Phys. J. Plus 135, 910 (2020)

    Article  Google Scholar 

  7. A.S. Sayyad, Y.M. Ghugal, Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature. Compos. Struct. 171, 486–504 (2017)

    Article  Google Scholar 

  8. M.M. Alipour, An analytical approach for bending and stress analysis of cross/angle-ply laminated composite plates under arbitrary non-uniform loads and elastic foundations. Arch. Civ. Mech. Eng. 16, 193–210 (2016)

    Article  Google Scholar 

  9. J.L. Mantari, E.V. Granados, An original FSDT to study advanced composites on elastic foundation. Thin-Walled Struct. 107, 80–89 (2016)

    Article  Google Scholar 

  10. J.N. Reddy, A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51, 745–752 (1984)

    Article  ADS  MATH  Google Scholar 

  11. A. Lal, B.N. Singh, R. Kumar, Static response of laminated composite plates resting on elastic foundation with uncertain system properties. J. Reinf. Plast. Compos. 26(8), 807–829 (2007)

    Article  ADS  Google Scholar 

  12. A. Lal, B.N. Singh, R. Kumar, Nonlinear free vibration of laminated composite plates on elastic foundation with random system properties. Int. J. Mech. Sci. 50(7), 1203–1212 (2008)

    Article  MATH  Google Scholar 

  13. S.S. Akavci, Analysis of thick laminated composite plates on an elastic foundation with the use of various plate theories. Mech. Compos. Mater. 41(5), 445–460 (2005)

    Article  ADS  Google Scholar 

  14. H.S. Shen, J.J. Zheng, X.L. Huang, Dynamic response of shear deformable laminated plates under thermomechanical loading and resting on elastic foundations. Compos. Struct. 60(1), 57–66 (2003)

    Article  Google Scholar 

  15. H.S. Shen, Y. Xiang, F. Lin, Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments. Compos. Struct. 170, 80–90 (2017)

    Article  Google Scholar 

  16. H.S. Shen, Y. Xiang, F. Lin, Thermal buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations. Thin-Walled Struct. 118, 229–237 (2017)

    Article  Google Scholar 

  17. A. Chanda, U. Chandel, R. Sahoo, N. Grover, Stress analysis of smart composite plate structures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, p.0954406220975449 (2020)

  18. M. Bouazza, A.M. Zenkour, Free vibration characteristics of multilayered composite plates in a hygrothermal environment via the refined hyperbolic theory. Eur. Phys. J. Plus 133, 217 (2018)

    Article  Google Scholar 

  19. S.S. Akavci, Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation. J. Reinf. Plast. Compos. 26(18), 1907–1919 (2007)

    Article  ADS  Google Scholar 

  20. J.L. Mantari, E.V. Granados, C.G. Soares, Vibrational analysis of advanced composite plates resting on elastic foundation. Compos. B Eng. 66, 407–419 (2014)

    Article  Google Scholar 

  21. A.M. Zenkour, M.N.M. Allam, A.F. Radwan, Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations. Arch. Civ. Mech. Eng. 14, 144–159 (2014)

    Article  Google Scholar 

  22. A.M. Zenkour, M.N.M. Allam, A.F. Radwan, Bending of cross-ply laminated plates resting on elastic foundations under thermo-mechanical loading. Int. J. Mech. Mater. Des. 9(3), 239–251 (2013)

    Article  Google Scholar 

  23. M. Sobhy, Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions. Compos. Struct. 99, 76–87 (2013)

    Article  ADS  Google Scholar 

  24. K. Nedri, N. El Meiche, A. Tounsi, Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory. Mech. Compos. Mater. 49(6), 629–640 (2014)

    Article  ADS  Google Scholar 

  25. M.R. Barati, M.H. Sadr, A.M. Zenkour, Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation. Int. J. Mech. Sci. 117, 309–320 (2016)

    Article  Google Scholar 

  26. A. Tounsi, S.U. Al-Dulaijan, M.A. Al-Osta, A. Chikh, M.M. Al-Zahrani, A. Sharif, A. Tounsi, A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation. Steel Compos. Struct. 34(4), 511–524 (2020)

    Google Scholar 

  27. F.Z. Zaoui, D. Ouinas, A. Tounsi, New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos. B Eng. 159, 231–247 (2019)

    Article  Google Scholar 

  28. M. Kaddari, A. Kaci, A.A. Bousahla, A. Tounsi, F. Bourada, A. Tounsi, E.A. Bedia, M.A. Al-Osta, A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis. Comput. Concr. 25(1), 37–57 (2020)

    Google Scholar 

  29. T. Kant, K. Swaminathan, Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory. Compos. Struct. 56(4), 329–344 (2002)

    Article  Google Scholar 

  30. S. Abrate, M. Di Sciuva, Equivalent single layer theories for composite and sandwich structures: a review. Compos. Struct. 179, 482–494 (2017)

    Article  Google Scholar 

  31. L. Iurlaro, M.D. Gherlone, M. Di Sciuva, A. Tessler, Assessment of the refined zigzag theory for bending, vibration, and buckling of sandwich plates: a comparative study of different theories. Compos. Struct. 106, 777–792 (2013)

    Article  Google Scholar 

  32. D.H. Robbins Jr., J. Reddy, Modelling of thick composites using a layerwise laminate theory. Int. J. Numer. Meth. Eng. 36(4), 655–677 (1993)

    Article  MATH  Google Scholar 

  33. H. Hirane, M.O. Belarbi, M.S.A. Houari, A. Tounsi, A., On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates. Engineering with Computers, pp.1–29 (2021)

  34. M. Di Sciuva, Bending, vibration and buckling of simply supported thick multilayered orthotropic plates: an evaluation of a new displacement model. J. Sound Vib. 105(3), 425–442 (1986)

    Article  ADS  Google Scholar 

  35. M. Di Sciuva, Multilayered anisotropic plate models with continuous interlaminar stresses. Compos. Struct. 22(3), 149–167 (1992)

    Article  ADS  Google Scholar 

  36. K. Bhaskar, T.K. Varadan, Refinement of higher-order laminated plate theories. AIAA J. 27(12), 1830–1831 (1989)

    Article  ADS  Google Scholar 

  37. M. Cho, R. Parmerter, Finite element for composite plate bending based on efficient higher order theory. AIAA J. 32(11), 2241–2248 (1994)

    Article  ADS  MATH  Google Scholar 

  38. A. Chakrabarti, A.H. Sheikh, Vibration of laminate-faced sandwich plate by a new refined element. J. Aerosp. Eng. 17(3), 123–134 (2004)

    Article  Google Scholar 

  39. A. Chanda, R. Sahoo, Accurate stress analysis of laminated composite and sandwich plates. J. Strain Anal. Eng. Des. 56(2), 96–111 (2021)

    Article  Google Scholar 

  40. J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. (CRC Press, New York, 2004)

    MATH  Google Scholar 

  41. N.J. Pagano, Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater. 4(1), 20–34 (1970)

    Article  ADS  Google Scholar 

  42. R.D. Cook, Finite Element Modeling for Stress Analysis (Wiley, New York, 1995)

    MATH  Google Scholar 

  43. N. Grover, B.N. Singh, D.K. Maiti, Analytical and finite element modeling of laminated composite and sandwich plates: an assessment of a new shear deformation theory for free vibration response. Int. J. Mech. Sci. 67, 89–99 (2013)

    Article  Google Scholar 

  44. M.K. Pandit, A.H. Sheikh, B.N. Singh, An improved higher order zigzag theory for the static analysis of laminated sandwich plate with soft core. Finite Elem. Anal. Des. 44(9–10), 602–610 (2008)

    Article  Google Scholar 

  45. A. Setoodeh, A. Azizi, Bending and free vibration analyses of rectangular laminated composite plates resting on elastic foundation using a refined shear deformation theory. Iran. J. Mater. Form. 2(2), 1–13 (2015)

    Google Scholar 

  46. J.N. Reddy, On the solutions to forced motions of rectangular composite plates. J. Appl. Mech. 49, 403–408 (1982)

    Article  ADS  MATH  Google Scholar 

  47. A.A. Khdeir, J.N. Reddy, Exact solutions for the transient response of symmetric cross-plylaminates using a higher-order plate theory. Compos. Sci. Technol. 34(3), 205–224 (1989)

    Article  Google Scholar 

  48. A.H. Sheikh, A. Chakrabarti, A new plate bending element based on higher-order shear deformation theory for the analysis of composite plates. Finite Elem. Anal. Des. 39(9), 883–903 (2003)

    Article  Google Scholar 

  49. S. Srinivas, A.K. Rao, Bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. Int. J. Solids Struct. 6(11), 1463–1481 (1970)

    Article  MATH  Google Scholar 

  50. A.J.M. Ferreira, Analysis of composite plates using a layerwise theory and multiquadrics discretization. Mech. Adv. Mater. Struct. 12(2), 99–112 (2005)

    Article  Google Scholar 

  51. C.M.C. Roque, A.J.M. Ferreira, R.M.N. Jorge, Modelling of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions. Compos. B Eng. 36(8), 559–572 (2005)

    Article  Google Scholar 

  52. T. Kant, C.P. Arora, J.H. Varaiya, Finite element transient analysis of composite and sandwich plates based on a refined theory and a mode superposition method. Compos. Struct. 22(2), 109–120 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalin Sahoo.

Appendices

Appendix 1

Rigidity sub-matrices of bending

$$ \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left[ A \right]_{{\left( {3 \times 3} \right)}} } & {\left[ B \right]_{{\left( {3 \times 3} \right)}} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\left[ C \right]_{{\left( {3 \times 3} \right)}} } & {\left[ D \right]_{{\left( {3 \times 3} \right)}} } \\ \end{array} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\left[ G \right]_{{\left( {3 \times 3} \right)}} } & {\left[ H \right]_{{\left( {3 \times 3} \right)}} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\left[ I \right]_{{\left( {3 \times 3} \right)}} } & {\left[ L \right]_{{\left( {3 \times 3} \right)}} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\left[ M \right]_{{\left( {3 \times 3} \right)}} } & {\left[ P \right]_{{\left( {3 \times 3} \right)}} } \\ \end{array} } \\ \end{array} } \right] = \mathop \sum \limits_{k = 1}^{{{\text{NL}}}} \left\{ {\mathop \smallint \limits_{{z^{k} }}^{{z^{k + 1} }} \left( {\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left[ {\overline{Q}_{ij} } \right]^{k} } & {z\left[ {\overline{Q}_{ij} } \right]^{k} } \\ \end{array} } \\ {\begin{array}{*{20}c} {p_{1} \left[ {\overline{Q}_{ij} } \right]^{k} } & {p_{2} } \\ \end{array} \left[ {\overline{Q}_{ij} } \right]^{k} } \\ {\begin{array}{*{20}c} {z^{2} \left[ {\overline{Q}_{ij} } \right]^{k} } & {zp_{1} } \\ \end{array} \left[ {\overline{Q}_{ij} } \right]^{k} } \\ {\begin{array}{*{20}c} {zp_{2} \left[ {\overline{Q}_{ij} } \right]^{k} } & {p_{1}^{2} } \\ \end{array} \left[ {\overline{Q}_{ij} } \right]^{k} } \\ {\begin{array}{*{20}c} {p_{1} p_{2} \left[ {\overline{Q}_{ij} } \right]^{k} } & {p_{2}^{2} } \\ \end{array} \left[ {\overline{Q}_{ij} } \right]^{k} } \\ \end{array} } \right]{\text{d}}z} \right)} \right\}\quad (i,j = 1,2,3) $$

Rigidity sub-matrices of shear

$$ \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left[ {AA} \right]_{{\left( {2 \times 2} \right)}} } & {\left[ {EE} \right]_{{\left( {2 \times 2} \right)}} } & {\left[ {FF} \right]_{{\left( {2 \times 2} \right)}} } \\ \end{array} } \\ {\begin{array}{*{20}c} {\left[ {SS} \right]_{{\left( {2 \times 2} \right)}} } & {\left[ {TT} \right]_{{\left( {2 \times 2} \right)}} } & {\left[ {UU} \right]_{{\left( {2 \times 2} \right)}} } \\ \end{array} } \\ \end{array} } \right] = \mathop \sum \nolimits_{k = 1}^{{{\text{NL}}}} \left\{ {\mathop \int \nolimits_{{z^{k} }}^{{z^{k + 1} }} \left( {\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left[ {\overline{Q}_{ij} } \right]^{k} } & {q_{1} \left[ {\overline{Q}_{ij} } \right]^{k} } & {q_{2} \left[ {\overline{Q}_{ij} } \right]^{k} } \\ \end{array} } \\ {\begin{array}{*{20}c} {q_{1}^{2} \left[ {\overline{Q}_{ij} } \right]^{k} } & {q_{1} q_{2} \left[ {\overline{Q}_{ij} } \right]^{k} } & {q_{2}^{2} \left[ {\overline{Q}_{ij} } \right]^{k} } \\ \end{array} } \\ \end{array} } \right]{\text{d}}z} \right)} \right\}\quad (i,j = 4,5) $$

Appendix 2

Partial differential equation terms of the primary variables

\({{\varvec{\delta}}{\varvec{u}}}_{0}\):

$$ \begin{aligned} & A_{11} \frac{{\partial^{2} u_{0} }}{{\partial x^{2} }} + A_{12} \frac{{\partial^{2} v_{0} }}{\partial x\partial y} + B_{11} \left( { - \frac{{\partial^{3} w_{0} }}{{\partial x^{3} }} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{{\partial x^{2} }}} \right) + B_{12} \left( { - \frac{{\partial^{3} w_{0} }}{{\partial x\partial y^{2} }} + {\Omega }_{y} \frac{{\partial^{2} \beta_{y} }}{\partial x\partial y}} \right) \hfill \\ &\quad + C_{11} \frac{{\partial^{2} \beta_{x} }}{{\partial x^{2} }}D_{12} \frac{{\partial^{2} \beta_{y} }}{\partial x\partial y} + A_{66} \left( {\frac{{\partial^{2} u_{0} }}{{\partial y^{2} }} + \frac{{\partial^{2} v_{0} }}{\partial x\partial y}} \right) + B_{66} \left( { - 2\frac{{\partial^{3} w_{0} }}{{\partial x\partial y^{2} }} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{{\partial y^{2} }} + {\Omega }_{y} \frac{{\partial^{2} \beta_{y} }}{\partial x\partial y}} \right) \hfill \\ &\quad + C_{66} \frac{{\partial^{2} \beta_{x} }}{{\partial y^{2} }} + D_{66} \frac{{\partial^{2} \beta_{y} }}{\partial x\partial y} - \overline{I}_{0} \ddot{u}_{0} + \overline{I}_{1} \frac{{\partial \ddot{w}_{o} }}{\partial x} - \overline{I}_{3} \ddot{\beta }_{x} = 0 \hfill \\ \end{aligned} $$

\({{\varvec{\delta}}{\varvec{v}}}_{0}\):

$$ \begin{aligned} & A_{12} \frac{{\partial^{2} u_{0} }}{\partial x\partial y} + A_{22} \frac{{\partial^{2} v_{0} }}{{\partial y^{2} }} + B_{12} \left( { - \frac{{\partial^{3} w_{0} }}{{\partial x^{2} \partial y}} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y}} \right) + B_{22} \left( { - \frac{{\partial^{3} w_{0} }}{{\partial y^{3} }} + {\Omega }_{y} \frac{{\partial^{2} \beta_{y} }}{{\partial y^{2} }}} \right) \hfill \\ &\quad + C_{12} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y}+D_{22} \frac{{\partial^{2} \beta_{y} }}{{\partial y^{2} }} + A_{66} \left( {\frac{{\partial^{2} u_{0} }}{\partial x\partial y} + \frac{{\partial^{2} v_{0} }}{{\partial x^{2} }}} \right) + B_{66} \left( { - 2\frac{{\partial^{3} w_{0} }}{{\partial x^{2} \partial y}} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y} + {\Omega }_{y} \frac{{\partial^{2} \beta_{y} }}{{\partial x^{2} }}} \right) \hfill \\ &\quad + C_{66} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y} + D_{66} \frac{{\partial^{2} \beta_{y} }}{{\partial x^{2} }} - \overline{I}_{0} \ddot{v}_{0} + \overline{I}_{1} \frac{{\partial \ddot{w}_{o} }}{\partial y} - \overline{I}_{6} \ddot{\beta }_{y} = 0 \hfill \\ \end{aligned} $$

\({{\varvec{\delta}}{\varvec{w}}}_{0}\):

$$ \begin{aligned} & B_{11} \frac{{\partial^{3} u_{0} }}{{\partial x^{3} }} + B_{12} \frac{{\partial^{3} v_{0} }}{{\partial x^{2} \partial y}} + G_{11} \left( { - \frac{{\partial^{4} w_{o} }}{{\partial x^{4} }} + {\Omega }_{x} \frac{{\partial^{3} \beta_{x} }}{{\partial x^{3} }}} \right) + G_{12} \left( { - \frac{{\partial^{4} w_{o} }}{{\partial x^{2} \partial y^{2} }} + {\Omega }_{y} \frac{{\partial^{3} \beta_{y} }}{{\partial x^{2} \partial y}}} \right) \hfill \\ &\quad + H_{11} \frac{{\partial^{3} \beta_{x} }}{{\partial x^{3} }} + I_{12} \frac{{\partial^{3} \beta_{y} }}{{\partial x^{2} \partial y}} + 2B_{66} \left( {\frac{{\partial^{3} u_{0} }}{{\partial x\partial y^{2} }} + \frac{{\partial^{3} v_{0} }}{{\partial x^{2} \partial y}}} \right) + 2G_{66} \left( { - 2\frac{{\partial^{4} w_{o} }}{{\partial x^{2} \partial y^{2} }} + {\Omega }_{x} \frac{{\partial^{3} \beta_{x} }}{{\partial x\partial y^{2} }} + {\Omega }_{y} \frac{{\partial^{3} \beta_{y} }}{{\partial x^{2} \partial y}}} \right) \hfill \\ &\quad + 2H_{66} \frac{{\partial^{3} \beta_{x} }}{{\partial x\partial y^{2} }} + 2I_{66} \frac{{\partial^{3} \beta_{y} }}{{\partial x^{2} \partial y}} + B_{12} \frac{{\partial^{3} u_{0} }}{{\partial x\partial y^{2} }} + B_{22} \frac{{\partial^{3} v_{0} }}{{\partial y^{3} }} + G_{12} \left( { - \frac{{\partial^{4} w_{o} }}{{\partial x^{2} \partial y^{2} }} + {\Omega }_{x} \frac{{\partial^{3} \beta_{x} }}{{\partial x\partial y^{2} }}} \right) \hfill \\ &\quad + G_{22} \left( { - \frac{{\partial^{4} w_{o} }}{{\partial y^{4} }} + {\Omega }_{y} \frac{{\partial^{3} \beta_{y} }}{{\partial y^{3} }}} \right) + H_{12} \frac{{\partial^{3} \beta_{x} }}{{\partial x\partial y^{2} }} + I_{22} \frac{{\partial^{3} \beta_{y} }}{{\partial y^{3} }} - \overline{I}_{1} \left( {\frac{{\partial \ddot{u}_{o} }}{\partial x} + \frac{{\partial \ddot{v}_{o} }}{\partial y}} \right) + \overline{I}_{2} \left( {\frac{{\partial^{2} \ddot{w}_{0} }}{{\partial x^{2} }} + \frac{{\partial^{2} \ddot{w}_{0} }}{{\partial y^{2} }}} \right) \hfill \\ &\quad - \overline{I}_{4} \frac{{\partial \ddot{\beta }_{x} }}{\partial x} - \overline{I}_{7} \frac{{\partial \ddot{\beta }_{y} }}{\partial y} - \overline{I}_{0} \ddot{w}_{0} + q(t) - k_{w} w_{0} + k_{s} \frac{{\partial^{2} w_{0} }}{{\partial x^{2} }} + k_{s} \frac{{\partial^{2} w_{0} }}{{\partial y^{2} }} = 0 \hfill \\ \end{aligned} $$

\({\varvec{\delta}}{{\varvec{\beta}}}_{{\varvec{x}}}\):

$$ \begin{aligned} & {\Omega }_{x} B_{11} \frac{{\partial^{2} u_{0} }}{{\partial x^{2} }} + {\Omega }_{x} B_{12} \frac{{\partial^{2} v_{0} }}{\partial x\partial y} + {\Omega }_{x} G_{11} \left( { - \frac{{\partial^{3} w_{0} }}{{\partial x^{3} }} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{{\partial x^{2} }}} \right) + {\Omega }_{x} G_{12} \left( { - \frac{{\partial^{3} w_{0} }}{{\partial x\partial y^{2} }} + {\Omega }_{y} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y}} \right) \hfill \\ &\quad + {\Omega }_{x} H_{11} \frac{{\partial^{2} \beta_{x} }}{{\partial x^{2} }} + {\Omega }_{x} I_{12} \frac{{\partial^{2} \beta_{y} }}{\partial x\partial y} + C_{11} \frac{{\partial^{2} u_{0} }}{{\partial x^{2} }} + C_{12} \frac{{\partial^{2} v_{0} }}{\partial x\partial y} + H_{11} \left( { - \frac{{\partial^{3} w_{o} }}{{\partial x^{3} }} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{{\partial x^{2} }}} \right) \hfill \\ &\quad + H_{12} \left( { - \frac{{\partial^{3} w_{o} }}{{\partial x\partial y^{2} }} + {\Omega }_{y} \frac{{\partial^{2} \beta_{y} }}{\partial x\partial y}} \right) + L_{11} \frac{{\partial^{2} \beta_{x} }}{{\partial x^{2} }} + M_{12} \frac{{\partial^{2} \beta_{y} }}{\partial x\partial y} + {\Omega }_{x} B_{66} \left( {\frac{{\partial^{2} u_{0} }}{{\partial y^{2} }} + \frac{{\partial^{2} v_{0} }}{\partial x\partial y}} \right) \hfill \\ &\quad + {\Omega }_{x} G_{66} \left( { - 2\frac{{\partial^{3} w_{o} }}{{\partial x\partial y^{2} }} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{{\partial y^{2} }} + {\Omega }_{y} \frac{{\partial^{2} \beta_{y} }}{\partial x\partial y}} \right) + {\Omega }_{x} H_{66} \frac{{\partial^{2} \beta_{x} }}{{\partial y^{2} }} + {\Omega }_{x} I_{66} \frac{{\partial^{2} \beta_{y} }}{\partial x\partial y} \hfill \\ &\quad + C_{66} \left( {\frac{{\partial^{2} u_{0} }}{{\partial y^{2} }} + \frac{{\partial^{2} v_{0} }}{\partial x\partial y}} \right) + H_{66} \left( { - 2\frac{{\partial^{3} w_{o} }}{{\partial x\partial y^{2} }} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{{\partial y^{2} }} + {\Omega }_{y} \frac{{\partial^{2} \beta_{y} }}{\partial x\partial y}} \right) + L_{66} \frac{{\partial^{2} \beta_{x} }}{{\partial y^{2} }} \hfill \\ &\quad + M_{66} \frac{{\partial^{2} \beta_{y} }}{\partial x\partial y} - {\Omega }_{x}^{2} AA_{22} \beta_{x} - 2{\Omega }_{x} FF_{22} \beta_{x} - UU_{22} \beta_{x} - \overline{I}_{3} \ddot{u}_{0} + \overline{I}_{4} \frac{{\partial \ddot{w}_{0} }}{\partial x} - \overline{I}_{5} \ddot{\beta }_{x} = 0 \hfill \\ \end{aligned} $$

\({\varvec{\delta}}{{\varvec{\beta}}}_{{\varvec{y}}}\):

$$ \begin{aligned} & {\Omega }_{y} B_{12} \frac{{\partial^{2} u_{0} }}{\partial x\partial y} \\ &\quad + {\Omega }_{y} B_{22} \frac{{\partial^{2} v_{0} }}{{\partial y^{2} }} + {\Omega }_{y} G_{12} \left( { - \frac{{\partial^{3} w_{0} }}{{\partial x^{2} \partial y}} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y}} \right) + {\Omega }_{y} G_{22} \left( { - \frac{{\partial^{3} w_{0} }}{{\partial y^{3} }} + {\Omega }_{y} \frac{{\partial^{2} \beta_{y} }}{{\partial y^{2} }}} \right) \hfill \\ &\quad + {\Omega }_{y} H_{12} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y} + {\Omega }_{y} I_{22} \frac{{\partial^{2} \beta_{y} }}{{\partial y^{2} }} + D_{12} \frac{{\partial^{2} u_{0} }}{\partial x\partial y} + D_{22} \frac{{\partial^{2} v_{0} }}{{\partial y^{2} }} + I_{12} \left( { - \frac{{\partial^{3} w_{o} }}{{\partial x^{2} \partial y}} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y}} \right) \hfill \\ &\quad + I_{22} \left( { - \frac{{\partial^{3} w_{o} }}{{\partial y^{3} }} + {\Omega }_{y} \frac{{\partial^{2} \beta_{y} }}{{\partial y^{2} }}} \right) + M_{12} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y} + P_{22} \frac{{\partial^{2} \beta_{y} }}{{\partial y^{2} }} + {\Omega }_{y} B_{66} \left( {\frac{{\partial^{2} u_{0} }}{\partial x\partial y} + \frac{{\partial^{2} v_{0} }}{{\partial x^{2} }}} \right) \hfill \\ &\quad + {\Omega }_{y} G_{66} \left( { - 2\frac{{\partial^{3} w_{o} }}{{\partial x^{2} \partial y}} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y} + {\Omega }_{y} \frac{{\partial^{2} \beta_{y} }}{{\partial x^{2} }}} \right) + {\Omega }_{y} H_{66} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y} + {\Omega }_{y} I_{66} \frac{{\partial^{2} \beta_{y} }}{{\partial x^{2} }} \hfill \\ &\quad + D_{66} \left( {\frac{{\partial^{2} u_{0} }}{\partial x\partial y} + \frac{{\partial^{2} v_{0} }}{{\partial x^{2} }}} \right) + I_{66} \left( { - 2\frac{{\partial^{3} w_{o} }}{{\partial x^{2} \partial y}} + {\Omega }_{x} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y} + {\Omega }_{y} \frac{{\partial^{2} \beta_{y} }}{{\partial x^{2} }}} \right) + M_{66} \frac{{\partial^{2} \beta_{x} }}{\partial x\partial y} \hfill \\ &\quad + P_{66} \frac{{\partial^{2} \beta_{y} }}{{\partial x^{2} }} - {\Omega }_{y}^{2} AA_{11} \beta_{y} - 2{\Omega }_{y} EE_{11} \beta_{y} - SS_{11} \beta_{y} - \overline{I}_{6} \ddot{v}_{0} + \overline{I}_{7} \frac{{\partial \ddot{w}_{0} }}{\partial y} - \overline{I}_{8} \ddot{\beta }_{y} = 0 \hfill \\ \end{aligned} $$

Appendix 3

The elements of matrix ‘\(\left[{\varvec{H}}\right]\)

$$ \left[ H \right] = \left[ {\begin{array}{*{20}l} 1 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & {p_{1} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & {p_{2} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 1 \hfill & 0 \hfill & 0 \hfill & z \hfill & 0 \hfill & 0 \hfill & {p_{1} } \hfill & {p_{2} } \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 1 \hfill & 0 \hfill & {q_{1} } \hfill & 0 \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 0 \hfill & 1 \hfill & 0 \hfill & {q_{2} } \hfill \\ \end{array} } \right] $$

The nonzero elements of matrix ‘\(\left[{\varvec{B}}\right]\)’ for the ith node are written as

$$ \begin{gathered} \overline{B}_{{1,1_{i} }} = \overline{B}_{{3,2_{i} }} = \overline{B}_{{7,4_{i} }} = \overline{B}_{{10,5_{i} }} = \overline{B}_{{12,3_{i} }} = \frac{{\partial N_{i} }}{\partial x}; \hfill \\ \overline{B}_{{2,2_{i} }} = \overline{B}_{{3,1_{i} }} = \overline{B} =_{{8,5_{i} }} = \overline{B}_{{9,4_{i} }} = \overline{B}_{{11,3_{i} }} = \frac{{\partial N_{i} }}{\partial y}; \hfill \\ \overline{B}_{{4,6_{i} }} = \overline{B}_{{6,7_{i} }} = - \frac{{\partial N_{i} }}{\partial x};\quad \overline{B}_{{5,7_{i} }} = \overline{B}_{{6,6_{i} }} = - \frac{{\partial N_{i} }}{\partial y}; \hfill \\ \overline{B}_{{4,4_{i} }} = {\Omega }_{x} \frac{{\partial N_{i} }}{\partial x};\quad \overline{B}_{{5,5_{i} }} = {\Omega }_{y} \frac{{\partial N_{i} }}{\partial y};\quad \overline{B}_{{6,4_{i} }} = {\Omega }_{y} \frac{{\partial N_{i} }}{\partial y}; \hfill \\ \overline{B}_{{6,5_{i} }} = {\Omega }_{y} \frac{{\partial N_{i} }}{\partial x};\quad \overline{B}_{{12,4_{i} }} = {\Omega }_{x} N_{i} ;\quad \overline{B}_{{11,5_{i} }} = {\Omega }_{y} N_{i} ; \hfill \\ \overline{B}_{{11,7_{i} }} = \overline{B}_{{12,6_{i} }} = - N_{i} ;\quad \overline{B}_{{13,5_{i} }} = \overline{B}_{{14,4_{i} }} = N_{i} \hfill \\ \end{gathered} $$

The elements of the vector ‘\(\left[\overline{{\varvec{\varepsilon}} }\right]\)

$$ \begin{gathered} \overline{\overline{\varepsilon }}_{1} = \frac{{\partial u_{0} }}{\partial x},\quad \overline{\overline{\varepsilon }}_{2} = \frac{{\partial v_{0} }}{\partial y},\quad \overline{\overline{\varepsilon }}_{3} = \left( {\frac{{\partial u_{0} }}{\partial y} + \frac{{\partial v_{0} }}{\partial x}} \right),\quad \overline{\overline{\varepsilon }}_{4} = - \left( {\frac{{\partial \theta_{x} }}{\partial x} + \Omega_{x} \frac{{\partial \beta_{x} }}{\partial x}} \right), \hfill \\ \overline{\overline{\varepsilon }}_{5} = - \left( {\frac{{\partial \theta_{y} }}{\partial y} + \Omega_{y} \frac{{\partial \beta_{y} }}{\partial y}} \right),\quad \overline{\overline{\varepsilon }}_{6} = - \left( {\left( {\frac{{\partial \theta_{x} }}{\partial y} + \frac{{\partial \theta_{y} }}{\partial x}} \right) + \Omega_{x} \frac{{\partial \beta_{x} }}{\partial y} + \Omega_{y} \frac{{\partial \beta_{y} }}{\partial x}} \right), \hfill \\ \overline{\overline{\varepsilon }}_{7} = \frac{{\partial \beta_{x} }}{\partial x},\quad \overline{\overline{\varepsilon }}_{8} = \frac{{\partial \beta_{y} }}{\partial y},\quad \overline{\overline{\varepsilon }}_{9} = \frac{{\partial \beta_{x} }}{\partial y},\quad \overline{\overline{\varepsilon }}_{10} = \frac{{\partial \beta_{y} }}{\partial x},\overline{\overline{\varepsilon }}_{11} = \left( { - \theta_{y} + \frac{{\partial w_{0} }}{\partial y} + \Omega_{y} \beta_{y} } \right), \hfill \\ \overline{\overline{\varepsilon }}_{12} = \left( { - \theta_{x} + \frac{{\partial w_{0} }}{\partial x} + \Omega_{x} \beta_{x} } \right),\quad \overline{\overline{\varepsilon }}_{13} = \beta_{y} ,\quad \overline{\overline{\varepsilon }}_{14} = \beta_{x} \hfill \\ \end{gathered} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanda, A.G., Sahoo, R. A study on the stress and vibration characteristics of laminated composite plates resting on elastic foundations using analytical and finite element solutions. Eur. Phys. J. Plus 136, 1186 (2021). https://doi.org/10.1140/epjp/s13360-021-02090-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02090-8

Navigation