Skip to main content
Log in

Advanced photonic techniques for the analysis of the composite French folding fan

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Folding fans are complex artifacts that include a variety of materials that have been processed and assembled to produce very small supports and decorations. Unfortunately, due to their fragility, as well as the lack of suitable non-invasive and non-destructive analytical techniques, the constituent materials and stratigraphies of historic folding fans have been rarely studied so far. This work aimed to develop and demonstrate a suitable analytical methodology for characterizing a French fan and to establish manufacturing techniques employed in its production. To this goal, advanced non-destructive and micro-destructive photonic techniques were employed to gather compositional and processing information with a non-invasive approach. This artifact provided the opportunity to evaluate the potential of different techniques: Portable Raman spectroscopy (with excitation at 785 nm) was used for identifying the pigments of the painted leaves and the gemstones; particle-induced X-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) were employed to quantify metal alloy compositions and stratigraphy of the decorations; portable laser-induced breakdown spectroscopy (LIBS) allowed the measurement of elemental depth profiles of metal decorations which were congruent with those provided by PIXE. Finally, additional stratigraphic information on metal decorations, in terms of gold distribution and state of conservation, was achieved through selective laser ablation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. R.A. Crocombe, Portable spectroscopy. Appl. Spectrosc. 72, 1701–1751 (2018). https://doi.org/10.1177/0003702818809719

    Article  ADS  Google Scholar 

  2. R. Crocombe, P. Leary, B. Kammrath, Portable Spectroscopy and Spectrometry, vol. 1 (Wiley, Hoboken, 2021)

    Book  Google Scholar 

  3. P. Vandenabeele, H.G.M. Edwards, J. Jehlička, The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem. Soc. Rev. 43, 2628–2649 (2014). https://doi.org/10.1039/c3cs60263j

    Article  Google Scholar 

  4. P.H.O.V. Campos, C.R. Appoloni, M.A. Rizzutto et al., A low-cost portable system for elemental mapping by XRF aiming in situ analyses. Appl. Radiat. Isot. 152, 78–85 (2019). https://doi.org/10.1016/j.apradiso.2019.06.018

    Article  Google Scholar 

  5. E. Ravaud, L. Pichon, E. Laval et al., Development of a versatile XRF scanner for the elemental imaging of paintworks. Appl. Phys. A Mater. Sci. Process. 122, 1–7 (2016). https://doi.org/10.1007/s00339-015-9522-4

    Article  Google Scholar 

  6. I. Osticioli, D. Ciofini, M. Banchelli et al., ”Argento Deaurato” or “Argento Biancheggiato”? A rare and interesting case of silver background in Italian painting of the XIII century. Appl. Sci. (2020). https://doi.org/10.3390/app10072404

    Article  Google Scholar 

  7. D. Saviello, L. Toniolo, S. Goidanich, F. Casadio, Non-invasive identification of plastic materials in museum collections with portable FTIR reflectance spectroscopy: reference database and practical applications. Microchem. J. 124, 868–877 (2016). https://doi.org/10.1016/j.microc.2015.07.016

    Article  Google Scholar 

  8. D. Ciofini, J. Agresti, A.A. Mencaglia et al., Temperature sensing during Raman spectroscopy of lead white films in different purity grades and boundary conditions. Sens. Actuat. B Chem. (2020). https://doi.org/10.1016/j.snb.2020.128958

    Article  Google Scholar 

  9. I. Nakai, Y. Abe, Portable X-ray powder diffractometer for the analysis of art and archaeological materials. Appl. Phys. A 106, 279–293 (2011). https://doi.org/10.1007/s00339-011-6694-4

    Article  ADS  Google Scholar 

  10. M. Eveno, A. Duran, J. Castaing, A portable X-ray diffraction apparatus for in situ analyses of masters’ paintings. Appl. Phys. A 100, 577–584 (2010). https://doi.org/10.1007/s00339-010-5641-0

    Article  ADS  Google Scholar 

  11. J. Agresti, A.A. Mencaglia, S. Siano, Development and application of a portable LIPS system for characterising copper alloy artefacts. Anal. Bioanal. Chem. 395, 2255–2262 (2009). https://doi.org/10.1007/s00216-009-3053-9

    Article  Google Scholar 

  12. A. Giakoumaki, K. Melessanaki, D. Anglos, Laser-induced breakdown spectroscopy (LIBS) in archaeological science: applications and prospects. Anal. Bioanal. Chem. 387, 749–760 (2007). https://doi.org/10.1007/s00216-006-0908-1

    Article  Google Scholar 

  13. S. Bright, Investigating effective support mounts for fans during display by exploring new technologies. CeROArt (2012). https://doi.org/10.4000/ceroart.2546

    Article  Google Scholar 

  14. F. Abe, Y. Ohbuchi, T. Katayama, H. Sakamoto, Analysis of Japanese folding fan’s characteristic structure and traditional technical skill. In: WIT Transactions on Engineering Sciences. WIT Press, Ashurst (2019)

  15. Y. Li, Useless tribute, desirable exotics: Japanese folding fans in China, 1000–1500. Sungkyun. J. East Asian Stud. 21, 27–49 (2021). https://doi.org/10.1215/15982661-8873882

    Article  Google Scholar 

  16. D. Anglos, V. Detalle, Laser-induced breakdown spectroscopy. Laser Ind. Breakdown Spectrosc. 182, 531–554 (2014). https://doi.org/10.1007/978-3-642-45085-3

    Article  Google Scholar 

  17. G.S. Senesi, R.S. Harmon, R.R. Hark, Field-portable and handheld laser-induced breakdown spectroscopy: historical review, current status and future prospects. Spectrochim. Acta B At. Spectrosc. 175, 106013 (2021)

    Article  Google Scholar 

  18. M. Massi, N. Grassi, L. Giuntini, P.A. Mando, Advantages of scanning-mode ion beam analysis for the study of Cultural Heritage. Nucl. Inst. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 256, 712–718 (2007). https://doi.org/10.1016/j.nimb.2006.12.196

    Article  Google Scholar 

  19. L. St-Onge, M. Sabsabi, Towards quantitative depth-profile analysis using laser-induced plasma spectroscopy: investigation of galvannealed coatings on steel. Spectrochim. Acta B Spectrosc. 55, 299–308 (2000). https://doi.org/10.1016/S0584-8547(00)00146-4

    Article  ADS  Google Scholar 

  20. A. Botto, B. Campanella, S. Legnaioli et al., Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: a critical review. J. Anal. Atom. Spectrom. 34, 81–103 (2019). https://doi.org/10.1039/c8ja00319j

    Article  Google Scholar 

  21. S. Siano, J. Agresti, Archaeometallurgical characterisation of Donatello’s Florentine copper alloy masterpieces using portable laser-induced plasma spectroscopy and traditional techniques. Stud. Conserv. 60, S106–S119 (2015). https://doi.org/10.1179/0039363015Z.000000000215

    Article  Google Scholar 

  22. V. Lazic, M. Vadrucci, R. Fantoni et al., Applications of laser induced breakdown spectroscopy for cultural heritage: a comparison with XRF and PIXE techniques. Spectrochim. Acta B Atom. Spectrosc. 149, 1–14 (2018). https://doi.org/10.1016/j.sab.2018.07.012

    Article  ADS  Google Scholar 

  23. A. Galmed, Laser induced breakdown spectroscopy and PIXE for differentiation between different tungsten alloys. J. Adv. Phys. 16, 212–220 (2019). https://doi.org/10.24297/jap.v16i1.8326

    Article  Google Scholar 

  24. I. Osticioli, M. Bini, J. Agresti, et al., Material investigation on three special paper molds from Magnani’s museum collections. In: Proceedings of SPIE the international society for optical engineering (2013)

  25. N. Mendes, C. Lofrumento, A. Migliori, E.M. Castellucci, Micro-Raman and particle-induced X-ray emission spectroscopy for the study of pigments and degradation products present in 17th century coloured maps. J. Raman Spectrosc. (2008). https://doi.org/10.1002/jrs

    Article  Google Scholar 

  26. I. Osticioli, D. Ciofini, A.A. Mencaglia, S. Siano, Automated characterization of varnishes photo-degradation using portable T-controlled Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 172, 182–188 (2017). https://doi.org/10.1016/j.saa.2016.03.016

    Article  ADS  Google Scholar 

  27. F. Casadio, C. Daher, L. Bellot-Gurlet, Raman spectroscopy of cultural heritage materials: overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. Top Curr. Chem. (2016). https://doi.org/10.1007/s41061-016-0061-z

    Article  Google Scholar 

  28. D. Bersani, C. Conti, P. Matousek et al., Methodological evolutions of Raman spectroscopy in art and archaeology. Anal. Methods. (2016). https://doi.org/10.1039/c6ay02327d

    Article  Google Scholar 

  29. M. Kono, K. Baldwin, A. Wain, A. Rode, Treating the untreatable in art and heritage materials: ultrafast laser cleaning of “cloth-of-gold.” Langmuir (2015). https://doi.org/10.1021/la504400h

    Article  Google Scholar 

  30. M. Panzner, G. Wiedemann, M. Meier et al., Laser cleaning of gildings, in Lasers in the conservation of artworks. (Springer, Berlin, 2007), pp. 21–28

    Chapter  Google Scholar 

  31. S. Siano, A. Casciani, A. Giusti et al., The Santi Quattro Coronati by Nanni di Banco: cleaning of the gilded decorations. J. Cult. Herit. 4, 123–128 (2003). https://doi.org/10.1016/S1296-2074(02)01139-1

    Article  Google Scholar 

  32. S. Siano, F. Grazzi, Optimised pulse duration for the laser cleaning of oil gilding. Nuovo Cim della Soc Ital di Fis C 30, 123–128 (2007). https://doi.org/10.1393/ncc/i2006-10054-6

    Article  Google Scholar 

  33. N. Taccetti, L. Giuntini, G. Casini et al., The pulsed beam facility at the 3 MV Van de Graaff accelerator in Florence: overview and examples of applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 188, 255–260 (2002)

    Article  ADS  Google Scholar 

  34. M.P. Mateo, J.M. Vadillo, J.J. Laserna, Irradiance-dependent depth profiling of layered materials using laser-induced plasma spectrometry. J. Anal. Atom. Spectrom. 16, 1317–1321 (2001). https://doi.org/10.1039/b104440k

    Article  Google Scholar 

  35. I. Osticioli, J. Agresti, C. Fornacelli et al., Potential role of LIPS elemental depth profiling in authentication studies of unglazed earthenware artifacts. J. Anal. Atom. Spectrom. 27, 827–833 (2012). https://doi.org/10.1039/c2ja30011g

    Article  Google Scholar 

  36. C. Fourdrin, S. Pagès Camagna, C. Pacheco et al., Characterization of gold leaves on Greek terracotta figurines: a PIXE-RBS study. Microchem. J. 126, 446–453 (2016). https://doi.org/10.1016/j.microc.2015.12.030

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Francesco Persico ancient fans enthusiast and refined collector. This work was supported by EU Community’s H2020-INFRAIA-Research Infrastructure programme under IPERION HS Project (GA No. 871034)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iacopo Osticioli or Daniele Ciofini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osticioli, I., Ciofini, D., Calusi, S. et al. Advanced photonic techniques for the analysis of the composite French folding fan. Eur. Phys. J. Plus 136, 1105 (2021). https://doi.org/10.1140/epjp/s13360-021-02068-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02068-6

Navigation