Skip to main content
Log in

Characterisation of decoration and glazing materials of late 19th-early 20th century French porcelain and fine earthenware enamels: a preliminary non-invasive study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study focuses on the development of a non-invasive multi-analytical approach for the study of glazing and decoration materials used in French pottery from the late nineteenth and early twentieth century. The considerable commercial success of this art makes this time frame of particular interest as it led, among others, to a general modernisation of the production processes and materials to satisfy the increased demand and the flourishing trade of potteries: new ceramic bodies, alternative glaze formulation and a wider range of materials became available. Considering the pristine conservation state of the twenty-one selected samples (deriving from six factories or manufacturers in four different production areas in France), a multi-technique, non-invasive and non-deliberatively destructive analytical approach was chosen for the characterisation of glazes, pigments and other superficial materials. Each object was firstly observed with optical microscopy and subsequently underwent elemental composition analyses such as MA-XRF (macro X-ray fluorescence) and IBA (ion beam analyses) at the INFN LABEC Laboratory in Florence. For the identification of some of the compounds present in coloured enamels, a selection of the objects was analysed with Raman spectroscopy at the ICCOM CNR in Pisa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Vigàrio, French soft-paste porcelain during the 17 and 18 centuries. (2016)

  2. P. Colomban, The destructive/non-destructive identification of enameled pottery, glass artifacts and associated pigments—A brief overview. Arts 2, 77–110 (2013). https://doi.org/10.3390/arts2030077

    Article  Google Scholar 

  3. B. Carter, M.G. Norton, Ceramic Materials Science and Engineering (Springer, Berlin, 2013), pp. 17–34

    Google Scholar 

  4. W.H. Hooper, W.C. Phillips, A Manual of Marks on Pottery and Porcelain: A Dictionary of Easy Reference (London MacMillan and Co., New York, 1894)

    Google Scholar 

  5. P. Colomban, Rocks as blue, green and black pigments/dyes of glazed pottery and enamelled glass artefacts - a review. Eur. J. Mineral. 25, 863–879 (2014). https://doi.org/10.1127/0935-1221/2013/0025-2305

    Article  Google Scholar 

  6. K. Petrie, Ceramic Transfer Printing, the New Ceramics (A&C Black Publishers Limited, London, 2010)

    Google Scholar 

  7. M. Twyman, C. Bye, C. Gibbs, A History of Chromolithography: Printed Colour for All (British Library, London, 2013)

    Google Scholar 

  8. R.A. Eppler, Selecting ceramic pigments in materials & equipment/whitewares: ceramic engineering and science proceedings, vol. 8, ed. by W. Smothers (The American Ceramic Society, Inc., 1987), pp 1139–1149. Print ISBN:9780470374757

  9. http://www.barbotine-belge.com/onnaing/fr/onnaing.html (last accessed 03/03/2021)

  10. Industries Céramiques, Groupe IV; Royaume de Belgique, Ministère de l’Industrie et du Travail, Office du Travail et Inspection de l’industrie; Bruxelles; 1907

  11. https://amisfaiencefine.fr/Historique-buts (last accessed 03/03/2021)

  12. J Bontillot J, Petite histoire de la Faïence fine à Montereau; Les Dossiers de la Faïence fine; June 4th 1997; second edition (2007)

  13. http://www.pillivuyt.fr/

  14. http://manufrancois.free.fr/index_fichiers/Page524.htm (last accessed 03/03/2021)

  15. http://manufrancois.free.fr/index_fichiers/Page6120.htm (last accessed 03/03/2021)

  16. http://www.havilandcollectors.com/main/index.html (last accessed 03/03/2021)

  17. https://www.havilandonline.com/backmark.htm (last accessed 03/03/2021)

  18. Jacques Bontillot (Les Amis de la Faience Fine) private communication

  19. https://www.dinolite.us/products/am4113t (last accessed 03/03/2021)

  20. http://chnet.infn.it/en/who-we-are-2/ (last accessed 03/03/2021)

  21. F. Taccetti, L. Castelli, C. Czelusniak, N. Gelli, A. Mazzinghi, L. Palla, C. Ruberto, C. Censori, A. Lo Giudice, A. Re, D. Zafiropulos, F. Arneodo, V. Conicella, A. Di Giovanni, R. Torres, F. Castella, N. Mastrangelo, D. Gallegos, M. Tascon, F. Marte, L. Giuntini, A multipurpose X-ray fluorescence scanner developed for in situ analysis. Rend. Lincei. Sci. Fis. e Nat. 30, 307–322 (2019)

    Article  ADS  Google Scholar 

  22. A. Mazzinghi, C. Ruberto, L. Castelli, P. Ricciardi, C. Czelusniak, L. Giuntini, P.A. Mandò, M. Manetti, L. Palla, F. Taccetti, The importance of being little: MA-XRF on manuscripts on a Venetian island. X-Ray Spectrom. (2020). https://doi.org/10.1002/xrs.3181

    Article  Google Scholar 

  23. P. Ricciardi, A. Mazzinghi, S. Legnaioli, C. Ruberto, L. Castelli, The Choir books of San Giorgio Maggiore in Venice: results of in depth non-invasive analyses. Heritage 2, 1684–1701 (2019). https://doi.org/10.3390/heritage2020103

    Article  Google Scholar 

  24. M. Vadrucci, A. Mazzinghi, B. Sorrentino, S. Falzone, C. Gioia, P. Gioia, E.M. Loreti, M. Chiari, Characterisation of ancient Roman wall-painting fragments using non-destructive IBA and MA-XRF techniques. X-Ray Spectrom. (2020). https://doi.org/10.1002/xrs.3178

    Article  Google Scholar 

  25. L. Sottili, L. Guidorzi, A. Mazzinghi, C. Ruberto, L. Castelli, C. Czelusniak, L. Giuntini, M. Massi, F. Taccetti, M. Nervo, S. De Blasi, R. Torres, F. Arneodo, A. Re, G.A. Lo, The importance of being versatile: INFN-CHNet MA-XRF scanner on furniture at the CCR “La Venaria Reale.” Appl. Sci. 11(3), 1197 (2021). https://doi.org/10.3390/app11031197

    Article  Google Scholar 

  26. M. Chiari, S. Barone, A. Bombini, G. Calzolai, L. Carraresi, L. Castelli, C. Czelusniak, M.E. Fedi, N. Gelli, F. Giambi, F. Giardi, L. Giuntini, S. Lagomarsino, L. Liccioli, F. Lucarelli, M. Manetti, M. Massi, A. Mazzinghi, S. Nava, P. Ottanelli, S. Sciortino, C. Ruberto, L. Sodi, F. Taccetti, P.A. Mandò, LABEC, the INFN ion beam laboratory of nuclear techniques for environment and cultural heritage. Eur. Phys. J. Plus 136, 472 (2021). https://doi.org/10.1140/epjp/s13360-021-01411-1)

    Article  Google Scholar 

  27. P.A. Mandò, INFN-LABEC-Nuclear techniques for cultural heritage and environmental applications. Nucl. Phys. News (2009). https://doi.org/10.1080/10506890902740101

    Article  Google Scholar 

  28. S. Calusi, The external ion microbeam of the LABEC laboratory in florence: some application in cultural heritage. Microsc. Microanal. 17, 661–666 (2011). https://doi.org/10.1017/S1431927611000092

    Article  ADS  Google Scholar 

  29. C. Jeynes, M.J. Bailey, N.J. Bright, M.E. Christopher, G.W. Grime, B.N. Jones, V.V. Palitsin, R.P. Webb, Total IBA” – where are we? Nucl. Instr. Meth. B 271, 107–118 (2012)

    Article  ADS  Google Scholar 

  30. M. Chiari, A. Migliori, P.A. Mandò, Measurement of low currents in an external beam set-up. Nucl. Instr. Meth. B 188, 162–165 (2002)

    Article  ADS  Google Scholar 

  31. J.L. Campbell, N.I. Boyd, N. Grassi, P. Bonnick, J.A. Maxwell, Nucl. Instr. Meth. B 268, 3356–3363 (2010)

    Article  ADS  Google Scholar 

  32. M. Chiari, A. Migliori, P.A. Mandò, Investigation of beam-induced damage to ancient ceramics in external-PIXE measurements. Nucl. Instr. Meth. B 188, 151–155 (2002)

    Article  ADS  Google Scholar 

  33. M.G. Rasteiro, T. Gassman, R. Santos, E. Antunes, Crystalline phase characterization of glass-ceramic glazes. Ceram. Int. 33, 345–354 (2007). https://doi.org/10.1016/j.ceramint.2005.10.002

    Article  Google Scholar 

  34. E.M. Pérez-Monserrat, G. Cultrone, J.M. Rincón, A. Perla, R. Fort, Multidisciplinary study of glazed ceramics from Chamberí Metro Station (Madrid, Spain): a knowledge base with technological and heritage value. Appl. Clay Sci. 175, 102–114 (2019). https://doi.org/10.1016/j.clay.2019.03.032

    Article  Google Scholar 

  35. E. Beauvoit, A.B. Amara, N. Cantin, Q. Lemasson, C. Sireix, V. Marache, R. Chapoulie, Technological investigation on ceramic bodies of 19th century French white earthenware from the Bordeaux region. J. Archaeol. Sci.: Rep. 31, 102314 (2020)

    Google Scholar 

  36. P. Colomban, L. Arberet, B. Kırmızı, On-site Raman analysis of 17th and 18th century Limoges enamels: implications on the European cobalt sources and the technological relationship between Limoges and Chinese enamels. Ceram. Int. 43(13), 10158–10165 (2017)

    Article  Google Scholar 

  37. D. Mancini, C. Dupont-Logié, P. Colomban, On-site identification of Sceaux porcelain and faience using a portable Raman instrument. Ceram. Int. 42(13), 14918–14927 (2016)

    Article  Google Scholar 

  38. C. Miliani, B. Doherty, A.I. Daver, A. Loesch, H. Ulbricht, B.G. Brunetti, A. Sgamellotti, In situ non-invasive investigation on the painting techniques of early Meissen Stoneware. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 73(4), 587–592 (2009)

    Article  ADS  Google Scholar 

  39. P. Colomban, A. Tournie, L. Bellot-Gurlet, Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide. J. Raman Spectrosc. 37, 841–852 (2006)

    Article  ADS  Google Scholar 

  40. C. Bray, Borosilicate Glass in Dictionary of Glass: Materials and Techniques (University of Pennsylvania Press, Philadelphia, 2001), p. 56

    Google Scholar 

  41. C.A. Russell, Michael Faraday: Physics and Faith (Oxford University Press, Oxford, 2000), p. 74

    Google Scholar 

  42. F. Hamer, J. Hamer, The Potter’s Dictionary of Materials and Techniques (A&C Black Publishers Ltd, London, 2002)

    MATH  Google Scholar 

  43. L. Burgio, R.J. Clark, Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57, 1491–1521 (2001). https://doi.org/10.1016/S1386-1425(00)00495-9

    Article  ADS  Google Scholar 

  44. L.B. Hunt, Gold based glass and enamel colours. Endeavour 5, 61–67 (1981). https://doi.org/10.1016/0160-9327(81)90150-2

    Article  Google Scholar 

  45. F. Casadio, A. Bezur, K. Domoney, K. Eremin, L. Lee, J.L. Mass, A. Shortland, N. Zumbulyadis, X-ray fluorescence applied to overglaze enamel decoration on eighteenth- and nineteenth-century porcelain from central Europe. Stud. Conserv. 57, S61–S72 (2012). https://doi.org/10.1179/2047058412Y.0000000047

    Article  Google Scholar 

  46. D. Hradil, T. Grygar, J. Hradilová, P. Bezdička, V. Grunwaldová, I. Fogaš, C. Miliani, Microanalytical identification of Pb-Sb-Sn yellow pigment in historical European paintings and its differentiation from lead tin and Naples yellows. J. Cult. Herit. 8, 377–386 (2007). https://doi.org/10.1016/j.culher.2007.07.001

    Article  Google Scholar 

  47. S. Ruiz-Moreno, R. Pérez-Pueyo, A. Gabaldón, M.J. Soneira, C. Sandalinas, Raman laser fibre optic strategy for non-destructive pigment analysis. Identification of a new yellow pigment (Pb, Sn, Sb) from the Italian XVII century painting. J. Cult. Herit. 4, 309–313 (2003). https://doi.org/10.1016/s1296-2074(02)01213-x

    Article  Google Scholar 

  48. M. Tite, T. Pradell, A. Shortland, Discovery, production and use of tin-based opacifiers in glasses, enamels and glazes from the late iron age onwards: a reassessment. Archaeometry 50, 67–84 (2008). https://doi.org/10.1111/j.1475-4754.2007.00339.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. Jacques Bontillot from Les Amis de la Faïence Fine and M. Jean-Luc Joret from the Barbotine Belge Archive for their invaluable support in the reference research. Thanks are also due to Dr. Beatrice Campanella for her support during Raman analysis and to M.Sc. Leandro Sottili for his helpful suggestions. The authors warmly thank Fiorella Tozzi, Michela Pellegrino, Maria Grimaudo and Giovanna Cecchi for the careful care and selection of the objects.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Mazzinghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangani, S.M.E., Mazzinghi, A., Mandò, P.A. et al. Characterisation of decoration and glazing materials of late 19th-early 20th century French porcelain and fine earthenware enamels: a preliminary non-invasive study. Eur. Phys. J. Plus 136, 1079 (2021). https://doi.org/10.1140/epjp/s13360-021-02055-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02055-x

Navigation