Skip to main content
Log in

Power-law cosmology in Weyl-type f(QT) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Gravity is attributed to the spacetime curvature in classical general relativity (GR). But, other equivalent formulations or representations of GR, such as torsion or non-metricity, have altered the perception. We consider the Weyl-type f(QT) gravity, where Q represents the non-metricity and T is the trace of energy momentum tensor, in which the vector field \(\omega _{\mu }\) determines the non-metricity \(Q_{\mu \nu \alpha }\) of the spacetime. In this work, we employ the well-motivated \(f(Q, T)= \alpha Q+ \frac{\beta }{6k^{2}} T\), where \(\alpha \) and \(\beta \) are the model parameters. Furthermore, we assume that the universe is dominated by the pressure-free matter, i.e., the case of dust (\(p=0\)). We obtain the solution of field equations similar to a power-law in Hubble parameter H(z). We investigate the cosmological implications of the model by constraining the model parameter \(\alpha \) and \(\beta \) using the recent 57 points Hubble data and 1048 points Pantheon supernovae data. To study various dark energy models, we use statefinder analysis to address the current cosmic acceleration. We also observe the Om diagnostic describing various phases of the universe. Finally, it is seen that the solution which mimics the power-law fits well with the Pantheon data than the Hubble data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

There are no new data associated with this article.

References

  1. A.G. Riess et al., ApJ 116, 1009 (1998)

    Article  Google Scholar 

  2. S. Perlmutter et al., ApJ 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 170, 377 (2007)

    Article  ADS  Google Scholar 

  4. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  5. S. Cole et al., MNRAS 362, 505 (2005)

    Article  ADS  Google Scholar 

  6. E. Hawkins et al., MNRAS 346, 78 (2003)

    Article  ADS  Google Scholar 

  7. H.A. Buchdahl, MNRAS 150, 1 (1970)

    Article  ADS  Google Scholar 

  8. S. Capozziello, M. De Laurentis, Phys. Rept. 509, 167 (2011)

    Article  ADS  Google Scholar 

  9. S. Nojiri, S.D. Odintsov, Phys. Rev. D 68, 123512 (2003)

    Article  ADS  Google Scholar 

  10. S. Arora et al., Class. Quantum Gravity 37, 205022 (2020)

    Article  ADS  Google Scholar 

  11. T. Harko et al., Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  12. P.H.R.S. Moraes, P.K. Sahoo, Phys. Rev. D 96, 044038 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Z. Yousaf, M. Bhatti, Z. Ul-Haq, M. Ilyas, Euro. Phys. J. C 78, 307 (2018)

    Article  ADS  Google Scholar 

  14. K. Atazadeh, F. Darabi, Gen. Relativ. Gravit. 46, 1664 (2014)

    Article  ADS  Google Scholar 

  15. M. de Laurentis, M. Paolella, S. Capozziello, Phys. Rev. D 91, 083531 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Bahamonde, M. Zubair, G. Abbas, Phys. Dark Univ. 19, 78 (2018)

    Article  Google Scholar 

  17. S. Capozziello, M. Capriolo, L. Caso, Eur. Phys. J. C 80, 156 (2020)

    Article  ADS  Google Scholar 

  18. H. Weyl, Sitzungsber. Preuss. Akad. Wiss. 465, 1 (1918)

    Google Scholar 

  19. E. Scholz E, arXiv: 1703.03187. (2017)

  20. J.T. Wheeler, Gen. Relat. Grav. 50, 80 (2018)

    Article  ADS  Google Scholar 

  21. R. Weitzenbock, Invariantentheorie (Noordhoff, Groningen, 1923)

    MATH  Google Scholar 

  22. K. Hayashi, T. Shirafuji, Phys. Rev. D 19, 3524 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  23. M. Benetti, S. Capozziello, G. Lambiase, MNRAS 500, 1795 (2021)

    Article  ADS  Google Scholar 

  24. S. Capozziello et al., Phys. Rev. D 84, 043527 (2011)

    Article  ADS  Google Scholar 

  25. S. Mandal, P.K. Sahoo, Mod. Phys. Lett. A 35, 40 (2020)

    Article  Google Scholar 

  26. R. Myrzakulov, Eur. Phys. J. C 71, 1752 (2011)

    Article  ADS  Google Scholar 

  27. J.B. Jimenez, L. Heisenberg, T. Koivisto, Phys. Rev. D 98, 044048 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Lazkoz et al., Phys. Rev. D 100, 104027 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. W. Khyllep, A. Paliathanasis, J. Dutta, Phys. Rev. D 103, 103521 (2021)

    Article  ADS  Google Scholar 

  30. S. Mandal, D. Wang, P.K. Sahoo, Phys. Rev. D 102, 124029 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  31. Y. Xu et al., Eur. Phys. J. C 79, 708 (2019)

    Article  ADS  Google Scholar 

  32. Y. Xu et al., Eur. Phys. J. C 80, 449 (2020)

    Article  ADS  Google Scholar 

  33. S. Arora, A. Parida, P.K. Sahoo, Eur. Phys. J. C 81, 555 (2021)

    Article  ADS  Google Scholar 

  34. S. Bhattacharjee, P.K. Sahoo, Eur. Phys. J. C 80, 289 (2020)

    Article  ADS  Google Scholar 

  35. S. Arora, J.R.L. Santos, P.K. Sahoo, Phys. Dark Univ. 31, 100790 (2021)

    Article  Google Scholar 

  36. J.Z. Yang et al., Eur. Phys. J. C 81, 111 (2021)

    Article  ADS  Google Scholar 

  37. Z. Haghani et al., JCAP 10, 061 (2012)

    Article  ADS  Google Scholar 

  38. S. Kumar, MNRAS 422, 2532 (2012)

    Article  ADS  Google Scholar 

  39. S. Rani et al., JCAP 03, 031 (2015)

    Article  ADS  Google Scholar 

  40. G. Hinshaw et al., ApJS 208, 19 (2013)

    Article  ADS  Google Scholar 

  41. E. Komatsu et al., ApJS 192, 18 (2011)

    Article  ADS  Google Scholar 

  42. P.A.R. Ade et al., A & A 594, A13 (2016)

    Article  ADS  Google Scholar 

  43. N. Aghanim et al., A & A 641, A6 (2020)

    Article  ADS  Google Scholar 

  44. Will J. Percival et al., MNRAS 401, 2148 (2010)

    Article  ADS  Google Scholar 

  45. A.K. Camlibel, I. Semiz, M.A. Feyizoglu, Class. Quantum Gravity 37, 235001 (2020)

    Article  ADS  Google Scholar 

  46. D.M. Scolnic et al., Astrophys. J. 859, 101 (2018)

    Article  ADS  Google Scholar 

  47. U. Alam et al., MNRAS 344, 1057 (2003)

    Article  ADS  Google Scholar 

  48. V. Sahni et al., JETP Lett. 77, 201 (2003)

    Article  ADS  Google Scholar 

  49. V. Sahni, A. Shafieloo, A.A. Starobinsky, Phys. Rev. D 78, 103502 (2008)

    Article  ADS  Google Scholar 

  50. M. Shahalam, S. Sami, A. Agarwal, MNRAS 448, 2948 (2015)

    Article  ADS  Google Scholar 

  51. S. Vagnozzi, Phys. Rev. D 102, 023518 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  52. Valentino E. Di, Phys. Lett. B 761, 242–246 (2016)

    Article  ADS  Google Scholar 

  53. Valentino E. Di, Class. Quantum Gravity 38, 153001 (2021)

    Article  ADS  Google Scholar 

  54. D. Stern et al., J. Cosmol. Astropart. Phys. 02, 008 (2010)

    Article  ADS  Google Scholar 

  55. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  56. M. Moresco et al., J. Cosmol. Astropart. Phys. 08, 006 (2012)

    Article  ADS  Google Scholar 

  57. C. Zhang et al., Res. Astron. Astrop. 14, 1221 (2014)

    Article  ADS  Google Scholar 

  58. M. Moresco et al., J. Cosmol. Astropart. Phys. 05, 014 (2016)

    Article  ADS  Google Scholar 

  59. A.L. Ratsimbazafy et al., Mon. Not. R. Astron. Soc. 467, 3239 (2017)

    Article  ADS  Google Scholar 

  60. M. Moresco, Mon. Not. R. Astron. Soc. Lett. 450, L16 (2015)

    Article  ADS  Google Scholar 

  61. E. Gaztaaga et al., Mon. Not. R. Astron. Soc. 399, 1663 (2009)

    Article  ADS  Google Scholar 

  62. A. Oka et al., Mon. Not. R. Astron. Soc. 439, 2515 (2014)

    Article  ADS  Google Scholar 

  63. Y. Wang et al., Mon. Not. R. Astron. Soc. 469, 3762 (2017)

    Article  ADS  Google Scholar 

  64. C.H. Chuang, Y. Wang, Mon. Not. R. Astron. Soc. 435, 255 (2013)

    Article  ADS  Google Scholar 

  65. S. Alam et al., Mon. Not. R. Astron. Soc. 470, 2617 (2017)

    Article  ADS  Google Scholar 

  66. C. Blake et al., Mon. Not. R. Astron. Soc. 425, 405 (2012)

    Article  ADS  Google Scholar 

  67. C.H. Chuang et al., Mon. Not. R. Astron. Soc. 433, 3559 (2013)

    Article  ADS  Google Scholar 

  68. L. Anderson et al., Mon. Not. R. Astron. Soc. 441, 24 (2014)

    Article  ADS  Google Scholar 

  69. N.G. Busca et al., Astron. Astrophys. 552, A96 (2013)

    Article  Google Scholar 

  70. J.E. Bautista et al., Astron. Astrophys. 603, A12 (2017)

    Article  Google Scholar 

  71. T. Delubac et al., Astron. Astrophys. 574, A59 (2015)

    Article  Google Scholar 

  72. A. Font-Ribera et al., J. Cosmol. Astropart. Phys. 05, 027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

GG RS acknowledges University Grants Commission (UGC), New Delhi, India for awarding Junior Research Fellowship (UGC-Ref. No.: 201610122060). SA acknowledges CSIR, Govt. of India, New Delhi, for awarding Junior Research Fellowship. PKS acknowledges CSIR, New Delhi, India for financial support to carry out the Research project [No.03(1454)/19/EMR-II Dt.02/08/2019]. We are very much grateful to the honorable referee and the editor for the illuminating suggestions that have significantly improved our work in terms of research quality and presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Sahoo.

Appendix

Appendix

Here, Table 1 contains the 57 points of Hubble parameter values H(z) with errors \(\sigma _{H}\) from differential age (31 points), and BAO and other (26 points) approaches, along with references.

Table 1 H(z) datasets consisting of 57 data points

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadbail, G., Arora, S. & Sahoo, P.K. Power-law cosmology in Weyl-type f(QT) gravity. Eur. Phys. J. Plus 136, 1040 (2021). https://doi.org/10.1140/epjp/s13360-021-02048-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02048-w

Navigation