Skip to main content
Log in

New measurement of residues from \(^{12}\)C+\(^{93}\)Nb by the activation technique: a closer look at the reaction mechanisms

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A little has been known about the behavior of \(^{12}\)C induced reactions on medium mass targets. Owing to the projectile’s tightly bound nature, the phenomenon of incomplete fusion seemed less probable. However, a significant admixture of incomplete and complete fusion processes has been reported. The present article aims to study \(^{12}\)C induced reaction on \(^{93}\)Nb through the activation technique at a relatively low energy range, within \(\approx \) 3.3–6.3 MeV/u. Excitation functions of fourteen residues from various channels have been measured at twelve energy points to navigate the reaction process. Our study finds that the reaction mostly follows the complete fusion process governed by the pre-equilibrium mechanism, whereas the incomplete fusion process plays a minor role in explaining the results. Hauser–Feshbach and exciton model-based calculations from EMPIRE-3.2.2 with variations in level density have shown a good agreement in most reaction channels. Additional calculations from the statistical model code PACE4 have also been incorporated to understand the reaction process better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The cross section data are available and have already been reported explicitly in tables in the article.

References

  1. P.E. Hodgson, Nature 292, 671–672 (1981)

    Article  ADS  Google Scholar 

  2. P.E. Hodgson, Nature 273, 12–13 (1978)

    Article  ADS  Google Scholar 

  3. M. Blann, Ann. Nucl. Sci. 25, 123 (1975)

    Article  ADS  Google Scholar 

  4. M. Blann, Nucl. Phys. A 235, 211 (1974)

    Article  ADS  Google Scholar 

  5. E. Holub, D. Hilscher, G. Ingold, U. Jahnke, H. Orf, H. Rossner, Phys. Rev. C 28, 252 (1983)

    Article  ADS  Google Scholar 

  6. M. Cavinato, E. Fabrici, E. Gadioli, E. Gadioli Erba, P. Vergani, M. Crippa, G. Colombo, I. Redaelli, M. Ripamonti, Phys. Rev. C 52, 2577 (1995)

    Article  ADS  Google Scholar 

  7. M. Nandy, S. Ghosh, P.K. Sarkar, Phys. Rev. C 60, 044607 (1999)

    Article  ADS  Google Scholar 

  8. A. Chauhan, M. Maiti, Phys. Rev. C 99, 064609 (2019)

    Article  ADS  Google Scholar 

  9. B.P. Singh, M.K. Sharma, M.M. Musthafa, H.D. Bhardwaj, R. Prasad, Nucl. Inst. Methods Phys. Res. A 562, 717 (2006)

    Article  ADS  Google Scholar 

  10. D. Kumar, M. Maiti, Phys. Rev. C 94, 044603 (2016)

    Article  ADS  Google Scholar 

  11. J.J. Griffin, Phys. Rev. Lett. 17, 9 (1966)

    Article  Google Scholar 

  12. M. Blann, Phys. Rev. Lett. 27, 6 (1971)

    Article  Google Scholar 

  13. M. Blann, W. Scobel, E. Plechaty, Phys. Rev. C 30, 1493 (1984)

    Article  ADS  Google Scholar 

  14. J. Randrup, R. Vandenbosch, Nucl. Phys. A 474, 219–239 (1987)

    Article  ADS  Google Scholar 

  15. S. Chiba, M.B. Chadwick, K. Niita, T. Maruyama, T. Maruyama, A. Iwamoto, Phys. Rev. C. 53, 4 (1996)

    Article  Google Scholar 

  16. C.S. Palshetkar, S. Santra, A. Chatterjee, K. Ramachandran, S. Thakur, S.K. Pandit, K. Mahata, A. Shrivastava, V.V. Parkar, V. Nanal, Phys. Rev. C 82, 044608 (2010)

    Article  ADS  Google Scholar 

  17. P.R.S. Gomes, M.D. Rodríguez, G.V. Martí, I. Padron, L.C. Chamon, J.O. Fernández Niello, O.A. Capurro, A.J. Pacheco, J.E. Testoni, A. Arazi, M. Ramírez, R.M. Anjos, J. Lubian, R. Veiga, R. Liguori Neto, E. Crema, N. Added, C. Tenreiro, M.S. Hussein, Phys. Rev. C 71, 034608 (2005)

  18. D. Kumar, M. Maiti, Phys. Rev. C 96, 044624 (2017)

    Article  ADS  Google Scholar 

  19. D. Kumar, M. Maiti, Phys. Rev. C 96, 014617 (2017)

    Article  ADS  Google Scholar 

  20. D. Kumar, M. Maiti, Phys. Rev. C 95, 064602 (2017)

    Article  ADS  Google Scholar 

  21. A. Chauhan, M. Maiti, Phys. Rev. C 99, 034608 (2019)

    Article  ADS  Google Scholar 

  22. R. Prajapat, M. Maiti, Phys. Rev. C 101, 024608 (2020)

    Article  ADS  Google Scholar 

  23. K.J. Cook, E.C. Simpson, L.T. Bezzina, M. Dasgupta, D.J. Hinde, K. Banerjee, A.C. Berriman, C. Sengupta, Phys. Rev. Lett. 122, 192501 (2019)

    Article  Google Scholar 

  24. T. Ahmad, I.A. Rizvi, A. Agarwal, R. Kumar, K.S. Golda, A.K. Chaubey, Int. J. Mod. Phys. E 20(3), 645–655 (2011)

    Article  ADS  Google Scholar 

  25. F. Amorini, M. Cabibbo, G. Cardelaa, A. Di Pietro, P. Figuera, A. Musumarra, M. Papa, G. Pappalardo, F. Rizzo, S. Tudisco, Phys. Rev. C 58, 987 (1998)

  26. S. Chakrabarty, B.S. Tomar, A. Goswami, G.K. Gubbi, S.B. Manohar, A. Sharma, B. Bindukumar, S. Mukherjee, Nucl. Phys. A 678, 355 (2000)

    Article  ADS  Google Scholar 

  27. M.K. Sharma, Unnati, B.P. Singh, H.D. Bhardwaj, R. Kumar, K.S. Golda, R. Prasad, Nucl. Phys. A 776, 83 (2006)

  28. P. Vergani, E. Gadioli, E. Vaciago, E. Fabrici, E. Gadioli Erba, M. Galmarini, G. Ciavola, C. Marchetta, Phys. Rev. C 48(4), 1815 (1993)

    Article  ADS  Google Scholar 

  29. B.S. Tomar, A. Goswami, A.V.R. Reddy, S.K. Das, P.P. Burte, S.B. Manohar, S. Prakash, Z. Phys. A 343, 223 (1992)

    Article  ADS  Google Scholar 

  30. P. Misaelides, Radiochim. Acta 28, 1 (1981)

    Article  Google Scholar 

  31. M. Maiti, S. Lahiri, Phys. Rev. C 81, 024603 (2010)

    Article  ADS  Google Scholar 

  32. M. Maiti, S. Lahiri, Phys. Rev. C 84, 067601 (2011)

    Article  ADS  Google Scholar 

  33. M. Maiti, Phys. Rev. C 84, 044615 (2011)

    Article  ADS  Google Scholar 

  34. http://www.nndc.bnl.gov/nudat2/

  35. http://nucleardata.nuclear.lu.se/toi/

  36. M. Herman, R. Capote, B. V. Carlson, P. Oblo\(\check{z}\)insk\(\acute{y}\), M. Sin, A. Trkov, H. Weinke, V. Zerkin, Nucl. Data Sheets 108, 2655 (2007)

  37. W. Hauser, H. Feshbach, Phys. Rev. 87, 2 (1952)

    Article  Google Scholar 

  38. C.M. Perey, F.G. Perey, At. Data Nucl. Data Tables 17, 1 (1976)

    Article  ADS  Google Scholar 

  39. A.V. Ignatyuk, J.L. Weil, S. Raman, S. Kahane, Phys. Rev. C 47, 1504 (1993)

    Article  ADS  Google Scholar 

  40. R. Bass, Phys. Rev. Lett. 39, 265 (1977)

    Article  ADS  Google Scholar 

  41. E. Gadioli, C. Birattari, M. Cavinato, E. Fabrici, E. Gadioli Erba, V. Allori, F. Cerutti et al., Nucl. Phys. A 641(3), 271–296 (1998)

    Article  ADS  Google Scholar 

  42. A. Gavron, Phys. Rev. C 21, 230 (1980)

    Article  ADS  Google Scholar 

  43. A.J. Sierk, Phys. Rev. C 33, 2039 (1986)

    Article  ADS  Google Scholar 

  44. D. Hill, J. Wheeler, Phys. Rev. 89, 1102 (1953)

    Article  ADS  Google Scholar 

  45. J. Wilczynski, K. Siwek-Wilczynska, J.V. Driel, S. Gonggrijp, D.C.J.M. Hageman, R.V.F. Janssens, J. Lukasiak, R.H. Siemssen, S.Y.V.D. Werf, Nucl. Phys. A 373, 109 (1982)

    Article  ADS  Google Scholar 

  46. M. Maiti, S. Lahiri, Radiochim. Acta 103, 7–13 (2015)

    Article  Google Scholar 

  47. M.K. Sharma, P.P. Singh, D.P. Singh, A. Yadav, V.R. Sharma, I. Bala, R. Kumar, Unnati, B.P. Singh Prasad, Phys. Rev. C 91, 014603 (2015)

  48. H. Morgenstern, W. Bohne, W. Galster, K. Grabisch, A. Kyanowski, Phys. Rev. Lett. 52, 1104 (1984)

    Article  ADS  Google Scholar 

  49. A. Yadav, V.R. Sharma, P.P. Singh, D.P. Singh, M.K. Sharma, U. Gupta, R. Kumar, B.P. Singh, R. Prasad, R.K. Bhowmik, Phys. Rev. C 85, 034614 (2012)

    Article  ADS  Google Scholar 

  50. B.B. Kumar, A. Sharma, S. Mukherjee, S. Chakrabarty, P.K. Pujari, B.S. Tomar, A. Goswami, S.B. Manohar, S.K. Datta, Phys. Rev. C 59, 2923 (1999)

    Article  ADS  Google Scholar 

  51. S. Mukherjee, A. Sharma, S. Sodaye, A. Goswami, B.S. Tomar, Int. J. Mod. Phys. E 15, 237 (2006)

    Article  ADS  Google Scholar 

  52. M.K. Sharma, B.P. Singh, S. Gupta, M.M. Musthafa, H.D. Bhardwaj, R. Prasad, A.K. Sinha, J. Phys. Soc. Jpn. 72, 1917 (2003)

    Article  ADS  Google Scholar 

  53. S. Gupta, B.P. Singh, M.M. Musthafa, H.D. Bhardwaj, R. Prasad, Phys. Rev. C 61, 064613 (2000)

    Article  ADS  Google Scholar 

  54. P.P. Singh, A. Yadav, V.R. Sharma, R. Kumar, M.K. Sharma, B.P. Singh, R.P. Singh, S. Muralithar, R.K. Bhowmik, R. Prasad, J. Phys. Conf. Ser. 590, 012031 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend sincere thanks to the colleagues of IIT Roorkee and BARC-TIFR Pelletron staff for their cooperation and help during the experiment. One of the authors, MM, acknowledges Research Grant No. 03(1467)/19/EMR-II from CSIR(IN) and Grant No. CRG/2018/002354 from SERB(IN). The research fellowship of MHRD, Government of India, is highly acknowledged by MS. We also acknowledge project No. 12P-R&D-TFR-5.02-0300, Department of Atomic Energy, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Maiti.

Ethics declarations

Conflict of interest

There is no competing interest to the best of our knowledge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagwal, M., Maiti, M., Nag, T.N. et al. New measurement of residues from \(^{12}\)C+\(^{93}\)Nb by the activation technique: a closer look at the reaction mechanisms. Eur. Phys. J. Plus 136, 1057 (2021). https://doi.org/10.1140/epjp/s13360-021-01981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01981-0

Navigation