Skip to main content
Log in

Dynamical behaviour of nondissipative double dispersive microstrain wave in the microstructured solids

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This work is interested in studying nondissipative double dispersive microstrain wave in the microstructured solids. Using a certain transformation, the basic equation is transformed into an ordinary differential equation that turns into a two-dimensional dynamical system corresponding to a one-dimensional Hamiltonian. Based on qualitative theory of dynamical systems, we consider some qualitative analyses of this system and use a conserved quantity to construct some traveling wave solutions. These solutions are illustrated graphically. We study the degeneracy of these solutions through the transmission between the orbits for different values of the included parameters. Moreover, we numerically study the quasiperiodic solution for the perturbed system after adding certain periodic forces to the main equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.V. Porubov, F. Pastrone, Non-linear bell-shaped and kink-shaped strain waves in microstructured solids. Int. J. Non-Linear Mech. 39(8), 1289–1299 (2004). https://doi.org/10.1016/j.ijnonlinmec.2003.09.00

    Article  ADS  MATH  Google Scholar 

  2. M.N. Alam, Md.A. Akbar, S.T. Mohyud-Din, General traveling wave solutions of the strain wave equation in microstructured solids via the new approach of generalized (G\(\prime \)/G) expansion method. Alexandria Eng. J. 53(1), 233–241 (2014). https://doi.org/10.1016/j.aej.2014.01.00

    Article  Google Scholar 

  3. M.G. Hafez, M.A. Akbar, An exponential expansion method and its application to the strain wave equation in microstructured solids. Ain Shams Eng. J. 6(2), 683–690 (2015). https://doi.org/10.1016/j.asej.2014.11.01

    Article  Google Scholar 

  4. K.A. Gepreel, T.A. Nofal, N.S. Al-Sayali, Direct method for solving nonlinear strain wave equation in microstructure solids. Int. J. Phys. Sci. 11(10), 121–131 (2016). https://doi.org/10.5897/IJPS2015.4456

    Article  Google Scholar 

  5. Z. Ayati, K. Hosseini, M. Mirzazadeh, Application of Kudryashov and functional variable methods to the strain wave equation in microstructured solids. Nonlinear Eng. 6(1), 25–29 (2017). https://doi.org/10.1515/nleng-2016-0020

    Article  ADS  Google Scholar 

  6. H.M. Baskonus, T.A. Sulaiman, H. Bulut, Novel complex and hyperbolic forms to the strain wave equation in microstructured solids. Opt. Quantum Electron. (2018). https://doi.org/10.1007/s11082-017-1279-x

    Article  Google Scholar 

  7. M. Arshad, A.R. Seadawy, D. Lu, Study of bright-dark solitons of strain wave equation in micro-structured solids and its applications. Mod. Phys. Lett. B. 33(33), 1950417 (2019). https://doi.org/10.1142/S0217984919504177

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Irshad, N. Ahmed, A. Nazir, U. Khan, S. Mohyud-Din, Novel exact double periodic Soliton solutions to strain wave equation in micro structured solids. Phys. A (2020). https://doi.org/10.1016/j.physa.2019.124077

    Article  MathSciNet  Google Scholar 

  9. R.V. Anand, H. Rezazadeh, Periodic waves of the non dissipative double dispersive micro strain wave in the micro structured solids. Phys. A (2020). https://doi.org/10.1016/j.physa.2019.123772

    Article  MathSciNet  Google Scholar 

  10. N. Raza, A.R. Seadawy, A. Jhangeer, A.R. Butt, S. Arshed, Dynamical behavior of micro-structured solids with conformable time fractional strain wave equation. Phys. Lett. A (2020). https://doi.org/10.1016/j.physleta.2020.126683

    Article  MathSciNet  MATH  Google Scholar 

  11. A.R. Seadawy, M. Arshad, D. Lu, Dispersive optical solitary wave solutions of strain wave equation in micro-structured solids and its applications. Phys. A 545, 123772 (2020). https://doi.org/10.1016/j.physa.2019.123122

    Article  MathSciNet  Google Scholar 

  12. S. Kumar, A. Kumar, A.M. Wazwaz, New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. Eur. Phys. J. Plus. 135, 870 (2020). https://doi.org/10.1140/epjp/s13360-020-00883-x

    Article  Google Scholar 

  13. G. Akram, F. Batool, Solitary wave solutions of the Schäfer-Wayne short-pulse equation using two reliable methods. Opt. Quantum Electron. (2017). https://doi.org/10.1007/s11082-016-0856-8

    Article  Google Scholar 

  14. A.R. Seadawy, D. Lu, Soliton solutions of the nonlinear Schrödinger equation with the dual power law nonlinearity and resonant nonlinear Schrödinger equation and their modulation instability analysis. Optik 145, 79–88 (2017). https://doi.org/10.1016/j.ijleo.2017.07.016

    Article  ADS  Google Scholar 

  15. G. Yel, H.M. Baskonus, H. Bulut, Novel archetypes of new coupled Konno-Oono equation by using sine-Gordon expansion method. Opt. Quantum. Electron. 49, 285 (2017). https://doi.org/10.1007/s11082-017-1127-z

    Article  Google Scholar 

  16. S. Duran, M. Askin, T.A. Sulaiman, New soliton properties to the ill-posed Boussinesq equation arising in nonlinear physical science. Int. J. Optim. Control Theories Appl. 7(3), 240–247 (2017). https://doi.org/10.11121/ijocta.01.2017.00495

    Article  MathSciNet  Google Scholar 

  17. M. Mirzazadeh, R.T. Alqahtani, A. Biswas, Optical soliton perturbation with quadratic-cubic nonlinearity by Riccati-Bernoulli sub-ode method and Kudryashov‘s scheme. Optik 145, 74–78 (2017). https://doi.org/10.1016/j.ijleo.2017.07.01

    Article  ADS  Google Scholar 

  18. A.R. Seadawy, Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves. Eur. Phys. J. Plus. 132, 29 (2017). https://doi.org/10.1140/epjp/i2017-11313-4

    Article  Google Scholar 

  19. M.S. Bruzón, T.M. Garrido, R. de la Rosa, Symmetry reductions for a generalized fifth order KdV equation. Appl. Math. Nonlinear Sci. 2(2), 485–494 (2017). https://doi.org/10.21042/AMNS.2017.2.0004

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Ferdous, M.G. Hafez, Oblique closed form solutions of some important fractional evolution equations via the modified Kudryashov method arising in physical problems. J. Ocean Eng. Sci. 3(3), 244–252 (2018). https://doi.org/10.1016/j.joes.2018.08.00

    Article  Google Scholar 

  21. A. Kilicman, R. Silambarasan, Modified Kudryashov method to solve generalized Kuramoto-Sivashinsky equation. Symmetry 10, 527 (2018). https://doi.org/10.3390/sym10100527

    Article  Google Scholar 

  22. M.Y. Abou-zeid, Homotopy perturbation method for couple stresses effect on MHD peristaltic flow of a non-Newtonian nanofluid. Microsyst. Technol. 24(12), 4839–4846 (2018). https://doi.org/10.1007/s00542-018-3895-1

    Article  Google Scholar 

  23. C. Cattani, T.A. Sulaiman, H.M. Baskonus, H. Bulut, Solitons in an inhomogeneous Murnaghan‘s rod. Eur. Phys. J. Plus 133, 228 (2018). https://doi.org/10.1140/epjp/i2018-12085-y

    Article  Google Scholar 

  24. C.M. Khalique, O.D. Adeyemo, I. Simbanefayi, On optimal system, exact solutions and conservation laws of the modified equal-width equation. Appl. Math. Nonlinear Sci. 3(2), 409–418 (2018). https://doi.org/10.21042/AMNS.2018.2.0003

    Article  MathSciNet  Google Scholar 

  25. S.B. Munusamy, A. Dhar, On use of expanding parameters and auxiliary term in homotopy perturbation method for boussinesq equation with tidal condition. Environ. Modell. Assess. 24, 109–120 (2019). https://doi.org/10.1007/s10666-018-9636-0

    Article  Google Scholar 

  26. K.A. Gepreel, T.A. Nofal, A.A. Al-Asmari, Abundant traveling wave solutions for nonlinear Kawahara partial differential equation using extended trial equation method. Int. J. Comput. Math. 96(7), 1357–1376 (2019). https://doi.org/10.1080/00207160.2018.1487555

    Article  MathSciNet  Google Scholar 

  27. P. Rana, N. Shukla, Y. Gupta, I. Pop, Homotopy analysis method for predicting multiple solutions in the channel flow with stability analysis. Commun. Nonlinear Sci. Numer. Simul. 66, 183–193 (2019). https://doi.org/10.1016/j.cnsns.2018.06.01

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. R. Silambarasan, H.M. Baskonus, H. Bulut, Jacobi elliptic function solutions of the double dispersive equation in the Murnaghan‘s rod. Eur. Phys. J. Plus 134, 125 (2019). https://doi.org/10.1140/epjp/i2019-12541-2

    Article  Google Scholar 

  29. L. Du, Y. Sun, D. Wa, Bifurcations and solutions for the generalized nonlinear Schrödinger‘s equation. Phys. Lett. A 383, 126028 (2019). https://doi.org/10.1016/j.physleta.2019.126028

    Article  Google Scholar 

  30. H.I. Abdel-Gawad, A. Biswas, A.S. Alshomrani, M. Belic, Optical solitons and stability analysis with coupled nonlinear Schrödinger‘s equations having double external potentials. Results Phys. 15, 102707 (2019). https://doi.org/10.1016/j.rinp.2019.102707

    Article  Google Scholar 

  31. A.R. Seadawy, M. Arshad, D. Lu, The weakly nonlinear wave propagation of the generalized third-order nonlinear Schrödinger equation and its applications. Waves Random Complex Media (2020). https://doi.org/10.1080/17455030.2020.1802085

    Article  Google Scholar 

  32. U. Younas, A.R. Seadawy, M. Younis, S.T.R. Rizvi, Optical solitons and closed form solutions to the (3+1)-dimensional resonant Schrödinger dynamical wave equation. Int. J. Mod. Phys. B. (2020). https://doi.org/10.1142/S0217979220502914

    Article  MATH  Google Scholar 

  33. A.R. Seadawy, M. Arshad, D. Lu, The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows. Chaos Solitons Fract. (2020). https://doi.org/10.1016/j.chaos.2020.110141

    Article  MathSciNet  Google Scholar 

  34. X.M. Wang, L.L. Zhangb, X.X. Hu, Various types of vector solitons for the coupled nonlinear Schrödinger equations in the asymmetric fiber couplers. Optik. 219, 164989 (2020). https://doi.org/10.1016/j.ijleo.2020.164989

    Article  ADS  Google Scholar 

  35. A.Z. Sakhabutdinov, V.I. Anfinogentov, O.G. Morozov, V.A. Burdin, A.V. Bourdine, I.M. Gabdulkhakov, A.A. Kuznetsov, Original solution of coupled nonlinear Schrödinger equations for simulation of ultrashort optical pulse propagation in a birefringent fiber. Fibers (2020). https://doi.org/10.3390/fib8060034

    Article  Google Scholar 

  36. A.A. Elmandouh, A.G. Ibrahim, Bifurcation and travelling wave solutions for a (2+1)-dimensional KdV equation. J. Taibah Univ. Sci. 14(1), 139–147 (2020). https://doi.org/10.1080/16583655.2019.1709271

    Article  Google Scholar 

  37. A.A. Elmandouh, Bifurcation and new traveling wave solutions for the 2D Ginzbur-Landau equation. Eur. Phys. J. Plus. 135, 648 (2020). https://doi.org/10.1140/epjp/s13360-020-00675-3

    Article  Google Scholar 

  38. M.E. Elbrolosy, A.A. Elmandouh, Bifurcation and new traveling wave solutions for (2+1)-dimensional nonlinear Nizhnik-Novikov-Veselov dynamical equation. Eur. Phys. J. Plus. 135, 533 (2020). https://doi.org/10.1140/epjp/s13360-020-00546-x

    Article  Google Scholar 

  39. A.A. Elmandouh, Integrability, qualitative analysis and the dynamics of wave solutions for Biswas-Milovic equation. Eur. Phys. J. Plus. 136(6), 1–17 (2021). https://doi.org/10.1140/epjp/s13360-021-01626-2

    Article  Google Scholar 

  40. M.A. Nuwairan, A.A. Elmandouh, Qualitative analysis and wave propagation of the nonlinear model for low-pass electrical transmission lines. Phys. Scr. 96, 095214 (2021). https://doi.org/10.1088/1402-4896/ac0989

    Article  ADS  Google Scholar 

  41. V. Nemytskii, V. Stepanov, Qualitative Theory of Differential Equations (Dover, New York, 1989)

    MATH  Google Scholar 

  42. P.F. Byrd, M.D. Fridman, Handbook of Elliptic Integrals for Engineers and Scientists (Springer, Berlin, 1971)

    Book  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Deanship of Scientific Research at king Faisal University for the financial support under Nasher Track (Grant No. 216020)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Elbrolosy.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbrolosy, M.E., Elmandouh, A.A. Dynamical behaviour of nondissipative double dispersive microstrain wave in the microstructured solids. Eur. Phys. J. Plus 136, 955 (2021). https://doi.org/10.1140/epjp/s13360-021-01957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01957-0

Navigation