Skip to main content

Advertisement

Log in

Nanomaterials for automotive outer panel components: a review

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The future of mobility focuses on multidimensional parameters critical to vehicle emissions, passenger safety, and intelligent systems. Conventional materials are generally able to match the demands as mentioned above identified by the industry. However, due to the requirement for automotive components to amalgamate efficiently with future intelligent systems, there is a necessity for implementing advanced materials. Nanomaterials emerge as an optimal contender for usage in automotive body panels. Owing to their particles existing on the nanoscale, these materials offer enhanced physical, chemical, and electrical properties compared to conventional materials. As a direct effect of the above, automotive components can be manufactured in a lighter, safer, and economical manner. Crucially, nanomaterials show potential for tribological, rheological, electrical, and optical applications in automobiles. It leads to optimizations within vehicle powertrain and exhaust, tires, vision systems, and surface coating, leading to reductions in vehicle weight, greenhouse gas production, and overall carbon footprint. This article implements a study on the characteristics, properties, potential applications, and manufacturing techniques for nanomaterials. Various nanomaterial composites with differing chemical compositions are explored to gauge possible variations and compromises related to desired properties. Through transitive methods of inference formation, the capability for nanomaterial usage in automotive body panels is comprehensively examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Mathew, J. Joy, S.C. George, Potential applications of nanotechnology in transportation: a review. J. King Saud Univ.-Sci. 31(4), 586–594 (2019)

    Article  Google Scholar 

  2. M.C. Coelho, G. Torrao, N. Emami, Nanotechnology in automotive industry: research strategy and trends for the future small objects, big impacts. J. Nanosci. Nanotechnol. 12, 1–10 (2012)

    Article  Google Scholar 

  3. W.J. Joost, Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering. JOM 64, 1032–1038 (2012)

    Article  Google Scholar 

  4. A. Ugurlu, S. Oztuna, A comparative analysis study of alternative energy sources for automobiles. Int. J. Hydrogen Energy 40(34), 11178–11188 (2015)

    Article  Google Scholar 

  5. C. Seubert, K. Nietering, M. Nichols, R. Wykoff, S. Bollin, An overview of the scratch resistance of automotive coatings: exterior clearcoats and polycarbonate hardcoats. Coatings 2, 221–234 (2012)

    Article  Google Scholar 

  6. A. Pavlović, D. Sintoni, G. Minak, C. Fragassa, On the modal behaviour of ultralight composite sandwich automotive panels. On the modal behaviour of ultralight composite sandwich automotive panels. Compos. Struct. 248, 112523 (2020)

    Article  Google Scholar 

  7. S.U. Khan, C.Y. Li, N.A. Siddiqui, J.K. Kim, Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes. Compos. Sci. Technol. 71(12), 1486–1494 (2011)

    Article  Google Scholar 

  8. G. Koronis, A. Silva, M. Fontul, Green composites: a review of adequate materials for automotive applications. Compos. Part B: Eng. 44, 120–127 (2013)

    Article  Google Scholar 

  9. C. Alves, P.M.C. Ferrão, A.J. Silva, L.G. Reis, M. Freitas, L.B. Rodrigues, Ecodesign of automotive components making use of natural jute fiber composites. J. Clean. Prod. 18, 313–327 (2011)

    Article  Google Scholar 

  10. A.S. Herrmann, J. Nickel, U. Riedel, Construction materials based upon biologically renewable resources—from components to finished parts. Polym. Degrad. Stab. 59, 25161 (1998)

    Article  Google Scholar 

  11. J. Liu, Z. Zheng, F. Li, W. Lei, Y. Gao, Y. Wu, L. Zhang, Z.L. Wang, Nanoparticle chemically end-linking elastomer network with super-low hysteresis loss for fuel-saving automobile. Nano Energy 28, 87–96 (2016)

    Article  Google Scholar 

  12. S. Abbasi, M.H. Peerzada, S. Nizamuddin, N.M. Mubarak, Functionalized nanomaterials for the aerospace, vehicle, and sports industries, in Handbook of Functionalized Nanomaterials for Industrial Applications. ed. by C.M. Hussain (Elsevier, Amsterdam, 2020). https://doi.org/10.1016/B978-0-12-816787-8.00025-9

    Chapter  Google Scholar 

  13. N. Fantuzzi, M. Bacciocchi, J. Agnelli, D. Benedetti, Three-phase homogenization procedure for woven fabric composites reinforced by carbon nanotubes in thermal environment. Compos. Struct. 254, 112840 (2020)

    Article  Google Scholar 

  14. M. Tisza, I. Czinege, Comparative study of the application of steels and aluminium in lightweight production of automotive parts. Int. J. Lightweight Mater. Manuf. 1, 229e238 (2018)

    Google Scholar 

  15. M. Shafique, X. Luo, Nanotechnology in transportation vehicles: an overview of its applications, environmental, health and safety concerns. Materials 15, 2493 (2019)

    Article  ADS  Google Scholar 

  16. S.J. Lee, W.M. Kriven, Synthesis and hydration study of Portland cement components prepared by the organic steric entrapment method. Mater. Struct. Constr. 38, 87–92 (2005)

    Article  Google Scholar 

  17. L. Dong, A. Subramanian, B.J. Nelson, Carbon nanotubes for nanorobotics. Nano Today 2, 12–21 (2007)

    Article  Google Scholar 

  18. G.L. Burkholder, Y.W. Kwon, R.D. Pollak, Effect of carbon nanotube reinforcement on fracture strength of composite adhesive joints. J. Mater. Sci. 46, 3370–3377 (2011)

    Article  ADS  Google Scholar 

  19. A. Isenstadt, J. German, P. Bubna, M. Wiseman, U. Venkatakrishnan, L. Abbasov, P. Guillen, N. Moroz, D. Richman and G. Kolwich G. Lightweighting technology development and trends in U.S. passenger vehicles. in Working Paper 25; International Council on Clean Transportation. Washington, DC, USA, 2016; pp. 1–24.

  20. A. Manu, M.K. Gupta, Application of nanomaterials in automobile industry. Appl. Innov. Res. 2, 107–113 (2020)

    Google Scholar 

  21. M.H. Daneshifara, S.A. Sajjadib, S.M. Zebarjadc, M. Mohammadtaherid, M. Abbasib, K. Mossaddegh, The effects of fillers on properties of automotive nanocomposite clear coats: type, content and surface functionalization. Progress Org. Coat. 134, 33–39 (2019)

    Article  Google Scholar 

  22. K.K. Damaa, V.S. Babub, R.N. Rao, State of the art on constructional concepts of automotive body structures. Mater. Today: Proc. 5, 20981–20986 (2018)

    Google Scholar 

  23. O.M. Ikumapayi., E.T. Akinlabi., A.O.M. Adeoye., S.O. Fatoba. Microfabrication and nanotechnology in manufacturing system—an overview. in Materials Today: Proceedings. (2020)

  24. C.J. Kamp, J. Seferis, M. Arnold, V. Drakonakis, Featherweight composites manufactured by selective nanobridization with potential applications in the automotive industry. SAE Int. J. Mater. Manuf. 7, 622–670 (2014)

    Article  Google Scholar 

  25. T. Schmidt, R. Neumann and A. Alers. Nanotechnology Surface Modifications for Anti-Fog Applications in Automotive Lighting and Sensor Serial Production. Nanotechnology for Automotive Applications—Nanomaterial for Energy Devices, 2008 (SP-2177).

  26. H. Presting, U. König, Future nanotechnology developments for automotive applications. Mater. Sci. Eng. C 23, 737–741 (2003)

    Article  Google Scholar 

  27. A. Manu, M.K. Gupta, Application of Nanomaterials in Automobile Industry (NISCAIR-CSIR, New Delhi, 2020)

    Google Scholar 

  28. M. Weil, H. Dura, B. Shimon, M. Baumann, B. Zimmermann, S. Ziemann, S., and M. Decker, M. Ecological assessment of nano-enabled supercapacitors for automotive applications. in IOP Conference Series: Materials Science and Engineering (Vol. 40, No. 1, p. 012013). IOP Publishing. (2012)

  29. J. Hemanth. Development and Property Evaluation of Aluminum-Alloy Reinforced with Nano-ZrO2Metal Matrix Composites (NMMCs) for Automotive Applications. SAE Technical Paper Series (2009). https://doi.org/10.4271/2009-01-0218

  30. H. Presting, U. König, Future nanotechnology developments for automotive applications. Mater. Sci. Eng.: C 23(6–8), 737–741 (2003)

    Article  Google Scholar 

  31. M. Ciałkowski, M. Giersig, A. Iskra, J. Kałużny, and M. Babiak. Selected possible applications of nanomaterials in automotive industry. Explo-Diesel Gas Turbine, 9 (2009).

  32. Z. Wang, H. Xiao, Nanocomposites: recent development and potential automotive applications. SAE Int. J. Mater. Manuf. 1(1), 631–640 (2009)

    Article  Google Scholar 

  33. L.F. Nazar, S.H. Oh. The importance of nanotechnology in developing better energy storage materials for automotive transport (No. 2008-01-0689). SAE Technical Paper (2008).

  34. T. Oda, K. Morohoshi, and Y. Kai. Development of a transparent nanocomposite for automobile polymer glazing. SAE Technical Paper Series (2012). https://doi.org/10.4271/2012-01-0749

  35. E. Wallner, D.H.R. Sarma, B. Myers, S. Shah, D. Ihms, S. Chengalva, C. Dykstra. Nanotechnology Applications in Future Automobiles. SAE Technical Paper Series (2010). https://doi.org/10.4271/2010-01-11490

  36. E.D. Ramón-Raygoza, C.I. Rivera-Solorio, E. Giménez-Torres, D. Maldonado-Cortés, E. Cardenas-Alemán, R. Cué-Sampedro, Development of nanolubricant based on impregnated multilayer graphene for automotive applications: analysis of tribological properties. Powder Technol. 302, 363–371 (2016)

    Article  Google Scholar 

  37. A. Kotia, K. Chowdary, I. Srivastava, S.K. Ghosh, M.K.A. Ali, Carbon nanomaterials as friction modifiers in automotive engines: recent progress and perspectives. J. Mol. Liq. 310, 113200 (2020)

    Article  Google Scholar 

  38. M.K.A. Ali, H. Xianjun, L. Mai, C. Qingping, R.F. Turkson, C. Bicheng, Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribol. Int. 103, 540–554 (2016)

    Article  Google Scholar 

  39. P.D. Srivyas, M.S. Charoo, A review on tribological characterization of lubricants with nano additives for automotive applications. Tribol. Ind. 40(4), 594–623 (2018)

    Article  Google Scholar 

  40. G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol–gel process for automotive applications. Sens. Actuators B: Chem. 132(1), 224–233 (2008). https://doi.org/10.1016/j.snb.2008.01.030

    Article  Google Scholar 

  41. Y.H. Lee, M. Sain, T. Kuboki, C.B. Park, Extrusion foaming of nano-clay-filled wood fiber composites for automotive applications. SAE Int. J. Mater. Manuf. 1(1), 641–647 (2009)

    Article  Google Scholar 

  42. C.H. Hong, Y.B. Lee, J.W. Bae, J.Y. Jho, B.U. Nam, T.W. Hwang, Preparation and mechanical properties of polypropylene/clay nanocomposites for automotive parts application. J. Appl. Polym. Sci. 98(1), 427–433 (2005)

    Article  Google Scholar 

  43. R. Stauber, C. Cecco. Nanomaterials-a new dimension in automotive engineering (No. 2006-01-0105). SAE Technical Paper (2006).

  44. T. Schmidt, R. Neumann, A. Alers. Nanotechnology surface modifications for anti-fog applications in automotive lighting and sensor serial production (No. 2008-01-1048). SAE Technical Paper (2008).

  45. M. Werner, W. Kohly, M. Šimić, Nanotechnologies in Automobiles: Innvation Potentials in Hesse for the Automotive Industry and Its Subcontractors (HA Hessen Agentur GmbH, Wiesbaden, 2008)

    Google Scholar 

  46. S. Tomar, Innovative nanotechnology applications in automobiles. Int. J. Eng. Res. Technol 1(10), 2493 (2012)

    Google Scholar 

  47. R. Stauber, C. Cecco. Nanomaterials - A New Dimension in Automotive Engineering. SAE Technical Paper Series (2006). https://doi.org/10.4271/2006-01-0105

  48. A. Posmyk, J. Myalski, B. Hekner, Composite coatings with ceramic matrix including nanomaterials as solid lubricants for oil-less automotive applications. Arch. Metall. Mater. 61(2), 1039–1043 (2016). https://doi.org/10.1515/amm-2016-0175

    Article  Google Scholar 

  49. M. Kerstin, B. Elodie, L. Marcos, J. Maria, E. Yolanda, M. Sanz José, M. Lagaron Oliver, B. Alvise, H. Steve, B. Uwe, P. Germán, Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7(4), 74 (2017). https://doi.org/10.3390/nano7040074

    Article  Google Scholar 

  50. S. Sivasankaran, A.S. Alaboodi, Structural characterization and mechanical behavior of Al 6061 nanostructured matrix reinforced with TiO2 nanoparticles for automotive applications. Functionalized Nanomaterials (2016). https://doi.org/10.5772/65947

    Article  Google Scholar 

  51. R. Yoshida, H. Yamashige, M. Miura, T. Kimura, Y. Joti, Y. Bessho, M. Kuramoto, J. Yu, K. Khakurel, K. Tono, M. Yabashi, Extending the potential of X-ray free-electron lasers to industrial applications—an initiatory attempt at coherent diffractive imaging on car-related nanomaterials. J. Phys. B Atomic Mol. Opt. Phys. 48(24), 244 (2015). https://doi.org/10.1088/0953-4075/48/24/244008

    Article  Google Scholar 

  52. S. Sachse, L. Gendre, F. Silva, H. Zhu, A. Leszczyńska, K. Pielichowski, V. Ermini, J. Njuguna, On nanoparticles release from polymer nanocomposites for applications in lightweight automotive components. J. Phys.: Conf. Ser. 429, 2046 (2013). https://doi.org/10.1088/1742-6596/429/1/012046

    Article  Google Scholar 

  53. M. Park, H. Sun, H. Lee, J. Lee, J. Cho, Lithium-air batteries: survey on the current status and perspectives towards automotive applications from a battery industry standpoint. Adv. Energy Mater. 2(7), 780–800 (2012). https://doi.org/10.1002/aenm.201200020

    Article  Google Scholar 

  54. J. Njuguna, I. Pena, ZhuH. Rocks, SA, Blázquez M, Desai SA, , Opportunities and environmental health challenges facing integration of polymer nanocomposites: technologies for automotive applications. Int. J. Polym. Technol. 2, 117–126 (2009)

    Google Scholar 

  55. P. Sharma, M. Bhargava, Applications and characteristics of nanomaterials in industrial environment. Res. Dev. (IJCSEIERD) 3(4), 63–72 (2013)

    Google Scholar 

  56. K. Kataria, Selection of Different Nanomaterials and Their Fabrication Techniques in the Defence, Automotive and Computing Sectors (Academic Press, Cambridge, 2021)

    Google Scholar 

  57. S. Sequeira, Applications of Nanotechnology in Automobile Industry (Manipal Technologies Limited, Manipal, 2015)

    Google Scholar 

  58. J.M. Garcés, D.J. Moll, J. Bicerano, R. Fibiger, D.G. McLeod, Polymeric nanocomposites for automotive applications. Adv. Mater. 12(23), 1835–1839 (2000)

    Article  Google Scholar 

  59. A. Beniya, S. Higashi, Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2(7), 590–602 (2019)

    Article  Google Scholar 

  60. I. Ekengwu, O. Utu, C. Okafor, Nanotechnology in automotive industry: the potential of graphene. nanotechnology (not actual vehicle) 9, 1 (2019)

    Google Scholar 

  61. S. Ganapathy, K.R. Viswanathan, S. Raju, A.K. Appancheal. Comparative study of different nanolubricants for automotive applications. SAE Technical Paper Series (2016). https://doi.org/10.4271/2016-01-0486

  62. A.K. Naskar, J.K. Keum, R.G. Boeman, Polymer matrix nanocomposites for automotive structural components. Nat. Nanotechnol. 11(12), 1026–1030 (2016)

    Article  ADS  Google Scholar 

  63. A. Kiziltas, E. Erbas Kiziltas, S. Boran, D.J Gardner. Micro-and nanocellulose composites for automotive applications. in Proceedings of the SPE Automotive Composites Conference and Exhibition (ACCE), Novi, MI, USA (pp. 11–13) (2013).

  64. K. Müller, E. Bugnicourt, M. Latorre, M. Jorda, Y. Echegoyen Sanz, J.M. Lagaron, M. Schmid, Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials 7(4), 74 (2017)

    Article  Google Scholar 

  65. J. Markarian, Automotive and packaging offer growth opportunities for nanocomposites. Plast. Addit. Compound. 7(6), 18–21 (2005). https://doi.org/10.1016/s1464-391x(05)70485-2

    Article  Google Scholar 

  66. S. Martinet, Nanomaterials for rechargeable lithium batteries. Nanomater. Sustain. Energy. (2016). https://doi.org/10.1007/978-3-319-32023-6_13

    Article  Google Scholar 

  67. S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials. Curr. Opin. Solid State Mater. Sci. 12(3–4), 44–50 (2008)

    Article  ADS  Google Scholar 

  68. V. Ferreira, P. Egizabal, V. Popov, M. García de Cortázar, A. Irazustabarrena, A.M. López-Sabirón, G. Ferreira, Lightweight automotive components based on nanodiamond-reinforced aluminium alloy: a technical and environmental evaluation. Diamond Relat. Mater. 92, 174–186 (2019). https://doi.org/10.1016/j.diamond.2018.12.015

    Article  ADS  Google Scholar 

  69. P.I. Dolez, Nanomaterials definitions, classifications, and applications. Nanoengineering (2015). https://doi.org/10.1016/b978-0-444-62747-6.00001-4

    Article  Google Scholar 

  70. C. Verpoort, K. Bobzin, F. Ernst, K. Richardt, T. Schlaefer, A. Schwenk, D. Cook, G. Flores, W. Blume. Thermal spraying of nano-crystalline coatings for Al-cylinder bores (No. 2008-01-1050). SAE Technical Paper (2008).

  71. M. Mohseni, B. Ramezanzadeh, H. Yari, M.M. Gudarzi, The role of nanotechnology in automotive industries, in New Advances in Vehicular Technology and Automotive Engineering. ed. by J. Carmo (BoD-Books on Demand, Norderstedt, 2012), pp. 3–54

    Google Scholar 

  72. M.C. Coelho, G. Torrão, N. Emami, Nanotechnology in automotive industry: research strategy and trends for the future—small objects, big impacts. J. Nanosci. Nanotechnol. 12(8), 6621–6630 (2012)

    Article  Google Scholar 

  73. R. Asmatulu, P. Nguyen, E. Asmatulu, Nanotechnology safety in the automotive industry, in Nanotechnology Safety. ed. by R. Asmatulu (Elsevier, Amsterdam, 2013), pp. 57–72

    Chapter  Google Scholar 

  74. Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, F. Wei, The road for nanomaterials industry: a review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small 9(8), 1237–1265 (2013)

    Article  Google Scholar 

  75. M. Shafique, X. Luo, Nanotechnology in transportation vehicles: an overview of its applications, environmental, health and safety concerns. Materials 12(15), 2493 (2019)

    Article  ADS  Google Scholar 

  76. A.S. Malani, A.D. Chaudhari, R.U. Sambhe, A review on applications of nanotechnology in automotive industry. Int. J. Mech. Mechatron. Eng. 10(1), 36–40 (2015)

    Google Scholar 

  77. I. Corazzari, F.A. Deorsola, G. Gulino, E. Aldieri, S. Bensaid, F. Turci, D. Fino, Hazard assessment of W and Mo sulphide nanomaterials for automotive use. J. Nanoparticle Re. (2014). https://doi.org/10.1007/s11051-014-2401-7

    Article  Google Scholar 

  78. M.U. Niemann, S.S. Srinivasan, A.R. Phani, A. Kumar, D.Y. Goswami, E.K. Stefanakos, Nanomaterials for hydrogen storage applications: a review. J. Nanomater. 2008, 801–809 (2008)

    Article  Google Scholar 

  79. M.G. Lines, Nanomaterials for practical functional uses. J. Alloys Compd. 449(1–2), 242–245 (2008). https://doi.org/10.1016/j.jallcom.2006.02.082

    Article  Google Scholar 

  80. A. Sharma, A. Chouhan, L. Pavithran, U. Chadha, S.K. Selvaraj, Implementation of LSS framework in automotive component manufacturing: a review, current scenario and future directions. Mater. Today: Proc. 46, 7815–7824 (2021)

    Google Scholar 

  81. S. Senthil Kumaran, S. Muthukumaran, C. Chandrasekhar Reddy, Suitability of friction welding of tube to tube plate using an external tool process for different tube diameters - A study, Exp. Tech. 37, 8–14 (2013). https://doi.org/10.1111/j.1747-1567.2011.00765.x

  82. A. Raj, S. Ram Kishore, L. Jose, et al. A survey of electromagnetic metal casting computation designs, present approaches, future possibilities, and practical issues. Eur. Phys. J. Plus 136, 704 (2021). https://doi.org/10.1140/epjp/s13360-021-01689-1

  83. S. Senthil Kumaran, A. Daniel Das, Friction welding joints of SA 213 Tube to SA 387 Tube plate boiler grade materials by using clearance and interference fit method. In: Mater. Today Proc., pp. 8557–8566 (2018). https://doi.org/10.1016/j.matpr.2017.11.553

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Kumaran Selvaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virmani, K., Deepak, C., Sharma, S. et al. Nanomaterials for automotive outer panel components: a review. Eur. Phys. J. Plus 136, 921 (2021). https://doi.org/10.1140/epjp/s13360-021-01931-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01931-w

Navigation