Skip to main content
Log in

Numerical simulation of linear and nonlinear optical properties in heterostructure based on triple Gaussian quantum wells: effects of applied external fields and structural parameters

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we present a theoretical simulation of the impact of applied external fields and structural parameters on the total (linear plus nonlinear) optical absorption coefficient (TOAC) and total refractive relative index change coefficient (TRICs) in a heterostructure based on symmetric and nonsymmetric triple Gaussian quantum wells. The asymmetricity of the heterostructure was introduced by adjusting the depths of central and left potential wells. At first, we have calculated the wavefunctions and the subband energy levels for the lowest bounded states confined within the structure by solving the Schrödinger equation within the framework of the effective mass approximation under the impact of electric and magnetic fields. Throughout our study, the matrix elements and occupation ratio factor, which control the evolution of TOACs and TRICs, were evaluated and commented. The obtained results show that an increase of the intensity of electric and magnetic field produces a red shift in the TOACs and TRICs. Furthermore, we find that by increasing the depth of the left-hand quantum well (VLW), the modification of the confining potential profile, which becomes asymmetric, leads to a blue-shift behavior of the TOACs and TRICs at first and then a red-shift. We believe that the present study opens the way to the design of new optoelectronic devices operating in large spectral emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Figure 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. P.D. Dapkus, Annu. Rev. Mater. Sci. 12, 243 (1982)

    Article  ADS  Google Scholar 

  2. S. Hersee, J.P. Duchemim, Annu. Rev. Mater. Sci. 12, 65 (1982)

    Article  ADS  Google Scholar 

  3. N. Kristaedter, O.G. Schmidt, N.N. Ledentsov, D. Bimberg, V.M. Ustinov, A.Y. Egorov, A.E. Zhukov, M.V. Maximov, P.S. Kopev, Z.I. Alferov, Appl. Phys. Lett. 69, 1226 (1996)

    Article  ADS  Google Scholar 

  4. E. Leobandung, L.J. Guo, S.Y. Chou, Appl. Phys. Lett. 67, 2338 (1995)

    Article  ADS  Google Scholar 

  5. F. Durante, P. Alves, G. Karunasiri, N. Hanson, M. Byloos, H.C. Liu, A. Bezinger, M. Buchanan, Infrared Phys. Technol. 50, 182 (2007)

    Article  ADS  Google Scholar 

  6. K. Imamura, Y. Sugiyama, Y. Nakata, N. Muto, N. Yokoyama, Jpn. J. Appl. Phys. 34, L1445 (1995)

    Article  ADS  Google Scholar 

  7. R.F. Kazarinov, R.A. Suris, Sov. Phys. Semiconduct. 5, 707 (1971)

    Google Scholar 

  8. G. Liu, K. Gou, Q. Wu, Superlattice. Microst. 52, 183 (2012)

    Article  ADS  Google Scholar 

  9. H. Dakhlaoui, Optik 168, 416 (2018)

    Article  ADS  Google Scholar 

  10. H. Dakhlaoui, M. Nefzi, Superlattices Microst. 136, 106292 (2019)

    Article  Google Scholar 

  11. R. Khordad, Physica B 406, 3911 (2011)

    Article  ADS  Google Scholar 

  12. M.J. Karimi, H. Vafaei, Superlattice. Microst. 78, 1 (2015)

    Article  ADS  Google Scholar 

  13. Z.H. Zhang, L. Zou, K.X. Guo, J.H. Yuan, Optic Commun. 359, 316 (2016)

    Article  ADS  Google Scholar 

  14. H. Dakhlaoui, J. Appl. Phys. 117, 135705 (2015)

    Article  ADS  Google Scholar 

  15. H. Dakhlaoui, Superlattices Microst. 97, 439–447 (2016)

    Article  ADS  Google Scholar 

  16. R. Khordad, H. Bahramiyan, Superlattice. Microst. 76, 163 (2014)

    Article  ADS  Google Scholar 

  17. H. Dakhlaoui, N. Mouna, Optik 157, 1342–1349 (2018)

    Article  ADS  Google Scholar 

  18. H. Dakhlaoui, N. Mouna, Chem. Phys. Lett. 693, 40–45 (2018)

    Article  ADS  Google Scholar 

  19. S. Mou, K. Gou, B. Xiao, Superlattice. Microst. 72, 72 (2014)

    Article  ADS  Google Scholar 

  20. L. Tsang, S.L. Chuang, S.M. Lee, Phys. Rev. B 41, 5942 (1990)

    Article  ADS  Google Scholar 

  21. X. Lui, L. Zou, C. Liu, Z.H. Zhang, J.H. Yuan, Opt. Mater. 53, 218 (2016)

    Article  ADS  Google Scholar 

  22. H.V. Phuc, J. Phys. Chem. Solids 82, 36 (2015)

    Article  ADS  Google Scholar 

  23. H. Yu, Z. Zhang, Y.-S. Shi, Y.X. Guo, E. Feddi, J.-H. Yuan, Z.-H. Zhang, Eur. Phys. J. Plus 136, 555 (2021)

    Article  Google Scholar 

  24. J.-B. Xia, W.-J. Fan, Phys. Rev. B 40, 8508 (1989)

    Article  ADS  Google Scholar 

  25. C.Y. Lin, Y.K. Ho, Phys. Rev. A 84, 023407 (2011)

    Article  ADS  Google Scholar 

  26. W.F. Xie, Commun. Theor. Phys. 42, 151 (2004)

    Article  ADS  Google Scholar 

  27. H. Sari, F. Ungan, S. Sakiroglu, U. Yesilgul, E. Kasapoglu, I. Sökmen, Physica B 545, 250 (2018)

    Article  ADS  Google Scholar 

  28. Z.-H. Zhang, L. Zou, K.-X. Guo, J.-H. Yuan, Physica E 77, 90 (2016)

    Article  ADS  Google Scholar 

  29. R.L. Restrepo, J.P. González-Pereira, E. Kasapoglu, A.L. Morales, C.A. Duque, Opt. Mater. 86, 590 (2018)

    Article  ADS  Google Scholar 

  30. H. Dakhlaoui, F. Ungan, J.C. Martínez-Orozco, M.E. Mora-Ramos, Physica B 607, 412782 (2021)

    Article  Google Scholar 

  31. H. Dakhlaoui, Optics and Photonics Journal. 2, 140 (2012)

    Article  ADS  Google Scholar 

  32. R.L. Restrepo, F. Ungan, E. Kasapoglu, M.E. Mora-Ramos, A.L. Morales, C.A. Duque, Physica B 457, 165 (2015)

    Article  ADS  Google Scholar 

  33. W.H. Liu, Y. Qu, S.L. Ban, Superlattice. Microst. 102, 373 (2017)

    Article  ADS  Google Scholar 

  34. H. Dakhlaoui, M. Nefzi, Optik 157, 1342 (2018)

    Article  ADS  Google Scholar 

  35. J.C. Martínez-Orozco, K.A. Rodríguez-Magdaleno, J.R. Suárez-López, C.A. Duque, R.L. Restrepo, Superlattice. Microst. 92, 166 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ungan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhlaoui, H., Altuntas, I., Mora-Ramos, M.E. et al. Numerical simulation of linear and nonlinear optical properties in heterostructure based on triple Gaussian quantum wells: effects of applied external fields and structural parameters. Eur. Phys. J. Plus 136, 894 (2021). https://doi.org/10.1140/epjp/s13360-021-01907-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01907-w

Navigation