Skip to main content
Log in

Analysis of the anomalous quartic WWWW couplings at the LHeC and the FCC-he

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The quartic gauge boson couplings that identify the strengths of the gauge boson self-interactions are exactly determined by the non-Abelian gauge nature of the Standard Model. The examination of these couplings at ep collisions with high center-of-mass energy and high integrated luminosity provides an important opportunity to test the validity of the Standard Model and the existence of new physics beyond the Standard Model. The quartic gauge boson couplings can contribute directly to multi-boson production at colliders. Therefore, we examine the potential of the process \(ep \rightarrow \nu _{e}W^{+}W^{-} j\) at the Large Hadron Electron Collider and the Future Circular Collider-hadron electron to study non-standard WWWW couplings in a model independent way by means of the effective Lagrangian approach. We present an investigation on measuring \(W^{+}W^{-}\) production in pure leptonic and semileptonic decay channels. In addition, we calculate the sensitivity limits at \(95\%\) Confidence Level on the anomalous \(\frac{f_{M0}}{\Lambda ^{4}}\), \(\frac{f_{M1}}{\Lambda ^{4}}\), \(\frac{f_{M7}}{\Lambda ^{4}}\), \(\frac{f_{S0}}{\Lambda ^{4}}\), \(\frac{f_{S1}}{\Lambda ^{4}}\), \(\frac{f_{T0}}{\Lambda ^{4}}\), \(\frac{f_{T1}}{\Lambda ^{4}}\) and \(\frac{f_{T2}}{\Lambda ^{4}}\) couplings obtained by dimension-8 operators through the process \(ep \rightarrow \nu _{e}W^{+}W^{-} j\) for the Large Hadron Electron Collider and the Future Circular Hadron Electron Collider’s different center-of-mass energies and integrated luminosities. Our results show that with the process \(ep \rightarrow \nu _{e}W^{+}W^{-} j\) at the Large Hadron Electron Collider and the Future Circular Collider-hadron electron the sensitivity estimated on the anomalous WWWW couplings can be importantly strengthened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Chatrchyan et al., CMS collaboration. Phys. Lett. B 716, 30 (2012)

    Article  ADS  Google Scholar 

  2. G. Aad et al., ATLAS collaboration. Phys. Lett. B 716, 1 (2012)

    Article  ADS  Google Scholar 

  3. G. Belanger, F. Boudjema, Phys. Lett. B 288, 201 (1992)

    Article  ADS  Google Scholar 

  4. G. Belanger, F. Boudjema, Y. Kurihara, D. Perret-Gallix, A. Semenov, Eur. Phys. J. C 13, 283 (2000)

    Article  ADS  Google Scholar 

  5. M. Baak et al., The Snowmass EW WG report, arXiv:1310.6708 (2013)

  6. M. Koksal, Mod. Phys. Lett. A 29, 1450184 (2014)

    Article  ADS  Google Scholar 

  7. M. Koksal, Eur. Phys. J. Plus 130, 75 (2015)

    Article  Google Scholar 

  8. M. Koksal, A. Senol, Int. J. Mod. Phys. A 30, 1550107 (2015)

    Article  ADS  Google Scholar 

  9. A. Senol, M. Koksal, JHEP 1503, 139 (2015)

    Article  Google Scholar 

  10. A. Senol, M. Koksal, Phys. Lett. B 742, 143–148 (2015)

    Article  ADS  Google Scholar 

  11. A. Senol, M. Koksal, S.C. Inan, Adv. High Energy Phys. 2017, 6970587 (2017)

    Article  Google Scholar 

  12. M. Koksal, A. Senol, V. Ari, Adv. High Energy Phys. 2016, 8672391 (2016)

    Article  Google Scholar 

  13. A. Gutierrez-Rodriguez, C.G. Honorato, J. Montano, M.A. Perez, Phys. Rev. D 89, 034003 (2014)

    Article  ADS  Google Scholar 

  14. S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimper, Phys. Rev. D 89, 114004 (2014)

    Article  ADS  Google Scholar 

  15. S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimper, JHEP 1502, 165 (2015)

    Article  ADS  Google Scholar 

  16. C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1706, 142 (2017)

    Article  ADS  Google Scholar 

  17. K. Ye, D. Yang, Q. Li, Phys. Rev. D 88, 015023 (2013)

    Article  ADS  Google Scholar 

  18. O.J.P. Eboli, M.C. Gonzalez-Garcia, S.F. Novaes, Nucl. Phys. B 411, 381 (1994)

    Article  ADS  Google Scholar 

  19. O.J.P. Eboli, M.B. Magro, P.G. Mercadante, S.F. Novaes, Phys. Rev. D 52, 15 (1995)

    Article  ADS  Google Scholar 

  20. O.J.P. Eboli, M.C. Gonzalez-Garcia, Phys. Rev. D 93(9), 093013 (2016)

    Article  ADS  Google Scholar 

  21. O.J.P. Eboli, J.K. Mizukoshi, Phys. Rev. D 64, 075011 (2001)

    Article  ADS  Google Scholar 

  22. O.J.P. Eboli, M.C. Gonzalez-Garcia, S.M. Lietti, Phys. Rev. D 69, 095005 (2004)

    Article  ADS  Google Scholar 

  23. M. Beyer et al., Eur. Phys. J. C 48, 353 (2006)

    Article  ADS  Google Scholar 

  24. T. Pierzchala, K. Piotrzkowski, Nucl. Phys. Proc. Suppl. 179180, 257 (2008)

    Article  ADS  Google Scholar 

  25. S. Atag, I. Sahin, Phys. Rev. D 70, 053014 (2004)

    Article  ADS  Google Scholar 

  26. S. Atag, I. Sahin, Phys. Rev. D 75, 073003 (2007)

    Article  ADS  Google Scholar 

  27. I. Sahin, B. Sahin, Phys. Rev. D 86, 115001 (2012)

    Article  ADS  Google Scholar 

  28. G. Perez, M. Sekulla, D. Zeppenfeld, Eur. Phys. J. C 78(9), 759 (2018)

    Article  ADS  Google Scholar 

  29. A.S. Kurova, EYu. Soldatov Phys. Atom. Nucl. 80(4), 725 (2017)

    Article  ADS  Google Scholar 

  30. J. Kalinowski et al., Eur. Phys. J. C 78, 403 (2018)

    Article  ADS  Google Scholar 

  31. G. Perez, M. Sekulla, D. Zeppenfeld, Eur. Phys. J. C 78, 759 (2018)

    Article  ADS  Google Scholar 

  32. A.I. Ahmadov, arXiv:1806.03460

  33. A. Senol, Int. J. Mod. Phys. A 29, 1450148 (2014)

    Article  ADS  Google Scholar 

  34. A.M. Sirunyan et al., Phys. Rev. D 100, 012004 (2019)

    Article  ADS  Google Scholar 

  35. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 798, 134985 (2019)

    Article  Google Scholar 

  36. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 795, 281–307 (2019)

    Article  ADS  Google Scholar 

  37. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 774, 682–705 (2017)

    Article  ADS  Google Scholar 

  38. M. Aaboud et al., Atlas collaboration. Eur. Phys. J. C 77(9), 646 (2017)

    Article  ADS  Google Scholar 

  39. M. Aaboud et al., ATLAS Collaboration. JHEP 07, 107 (2017)

  40. A.M. Sirunyan et al., CMS Collaboration. JHEP 10, 072 (2017)

  41. M. Aaboud et al., Atlas collaboration. Phys. Rev. D 96(1), 012007 (2017)

    Article  ADS  Google Scholar 

  42. O.J.P. Eboli, M.C. Gonzalez-Garcia, J.K. Mizukoshi, Phys. Rev. D 74, 073005 (2006)

    Article  ADS  Google Scholar 

  43. M. Fabbrichesi, M. Pinamonti, A. Tonero, A. Urbano, Phys. Rev. D 93, 015004 (2016)

    Article  ADS  Google Scholar 

  44. M. Aaboud et al., Atlas collaboration. Eur. Phys. J. C 77, 141 (2017)

    Article  ADS  Google Scholar 

  45. C. Degrande et al., arXiv:1309.7452. (2013)

  46. Y. Wen, H. Qu, D. Yang, Qs Yan, Q. Li, Y. Mao, JHEP 1503, 025 (2015)

    Article  ADS  Google Scholar 

  47. H.Y. Bi, R.Y. Zhang, X.G. Wu, W.G. Ma, X.Z. Li, S. Owusu, Phys. Rev. D 95, 074020 (2017)

    Article  ADS  Google Scholar 

  48. J.L.A. Fernandez et al., LHeC study group. J. Phys. G39, 075001 (2012)

    ADS  Google Scholar 

  49. J. L. A. Fernandez, et al., [LHeC Study Group], arXiv:1211.5102

  50. O. Bruning, M. Klein, Mod. Phys. Lett. A 28, 1330011 (2013)

    Article  ADS  Google Scholar 

  51. A Large Hadron electron Collider at CERN, web page with recent papers, talks and workshop documentation: http://cern.ch/lhec

  52. P. Agostini, et al., [LHeC Collaboration and FCC-he Study Group],

  53. Y.C. Acar, A.N. Akay, S. Beser, H. Karadeniz, U. Kaya, B.B. Oner, S. Sultansoy, Methods Phys. Res. A 871, 47–53 (2017)

    ADS  Google Scholar 

  54. A. Abada et al., FCC collaboration. Eur. Phys. J. C 79, 474 (2019)

    Article  ADS  Google Scholar 

  55. A. Abada et al., FCC collaboration. Eur. Phys. J. Spec. Top. 228, 755 (2019)

    Article  Google Scholar 

  56. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks, Comput. Phys. Commun. 185, 2250 (2014)

    Article  ADS  Google Scholar 

  57. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, J. High Energy Phys. 06, 128 (2011)

    Article  ADS  Google Scholar 

  58. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, Comput. Phys. Commun. 183, 1201 (2012)

    Article  ADS  Google Scholar 

  59. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, JHEP 0207, 012 (2002)

    Article  ADS  Google Scholar 

  60. A. M Sirunyan et al., CMS Collaboration, CMS PAS SMP-19-008

  61. A. M Sirunyan et al., CMS Collaboration, CMS PAS SMP-18-007

  62. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 809, 135710 (2020)

    Article  Google Scholar 

  63. A.M. Sirunyan et al., CMS collaboration. Phys. Rev. D 100, 012004 (2019)

    Article  ADS  Google Scholar 

  64. A. M Sirunyan et al., CMS Collaboration, CMS-SMP-20-001, CERN-EP-2020-127

  65. R. D. Ballet al.[NNPDF Collaboration], Nucl. Phys. B877, 290 (2013) [arXiv:1308.0598 [hep-ph]]

  66. S. Carrazza [NNPDF Collaboration], PoS DIS2013, 279 (2013) [arXiv:1307.1131 [hep-ph]]

  67. S. Carrazza [NNPDF Collaboration],

  68. R. D. Ballet al.[NNPDF Collaboration], http://arxiv.org/abs/1410.8849[hep-pharXiv:1410.8849[hep-ph]

  69. T. Sjöstrand, P. Skands, JHEP 0403, 053 (2004). https://doi.org/10.1088/1126-6708/2004/03/053

    Article  ADS  Google Scholar 

  70. O.J.P. Eboli, M.C. Gonzalez-Garcia, http://feynrules.irmp.ucl.ac.be/wiki/AnomalousGaugeCoupling

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Köksal.

Appendix A: Fit functions for the total cross sections of the process \(ep \rightarrow \nu _{e}W^{+}W^{-} j\)

Appendix A: Fit functions for the total cross sections of the process \(ep \rightarrow \nu _{e}W^{+}W^{-} j\)

Numerical calculations of the total cross sections for \(\frac{f_{M1}}{\Lambda ^{4}}\) , \(\frac{f_{S1}}{\Lambda ^{4}}\) and \(\frac{f_{T1}}{\Lambda ^{4}}\) at \(\sqrt{s}=1.30\), 1.98, 7.07 and 10 TeV are given in Tables 24 and 25. Here, \(\sigma _{0}\) is the SM cross section of the process \(ep \rightarrow \nu _{e}W^{+}W^{-} j\) where \(W^{+}\) and \(W^{-}\) decays pure leptonic and semi-leptonic. On the other hand \(\sigma _{1}\) and \(\sigma _{2}\) are interference and new physics term, respectively.

Table 24 \(\sigma _{0}\), \(\sigma _{1}\) and \(\sigma _{2}\) values of \(\frac{f_{M1}}{\Lambda ^{4}}\) , \(\frac{f_{S1}}{\Lambda ^{4}}\), \(\frac{f_{T1}}{\Lambda ^{4}}\) for leptonic final state at \(\sqrt{s}=1.30\), 1.98, 7.07 and 10 TeV
Table 25 \(\sigma _{0}\), \(\sigma _{1}\) and \(\sigma _{2}\) values of \(\frac{f_{M1}}{\Lambda ^{4}}\) , \(\frac{f_{S1}}{\Lambda ^{4}}\), \(\frac{f_{T1}}{\Lambda ^{4}}\) for semileptonic final state at \(\sqrt{s}=1.30\), 1.98, 7.07 and 10 TeV

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurkanli, E., Ari, V., Billur, A.A. et al. Analysis of the anomalous quartic WWWW couplings at the LHeC and the FCC-he. Eur. Phys. J. Plus 136, 784 (2021). https://doi.org/10.1140/epjp/s13360-021-01775-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01775-4

Navigation