Skip to main content
Log in

Bjorken variable and scale dependence of quark transport coefficient in Drell–Yan process for proton incident on nucleus

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

By means of the nuclear parton distributions determined only with lepton-nuclear deep inelastic scattering experimental data and the analytic parameterization of quenching weight based on BDMPS formalism, a phenomenological analysis of the nuclear Drell–Yan differential cross section ratio as a function of Feynman variable is performed from Fermilab E906 and E866 experimental data. With the nuclear geometry effect on nuclear Drell–Yan process and the quark transport coefficient as a constant, our predictions are in good agreement with the experimental measurements. It is found that nuclear geometry effect has a significant impact on the quark transport coefficient in cold nuclear matter. It is necessary to consider the detailed nuclear geometry in studying the nuclear Drell–Yan process. Our calculated results reveal that the difference in the values of quark transport coefficient exists from E906 and E866 experiments. However, confirming the conclusion, that the quark transport coefficient depends on the target-quark momentum fraction, still needs more accurate experimental data on the Drell–Yan differential cross section ratio in the future. Three models are proposed and discussed for the quark transport coefficient as a function of the measurable kinematic variables. The quark transport coefficient is determined as a function of the Bjorken variable \(x_2\) and scale \(Q^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Karsch, Nucl. Phys. A 590, 367 (1995). arXiv:hep-lat/9503010

    Article  ADS  Google Scholar 

  2. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  3. J.E. Bernhard et al., Phys. Rev. C 94(2), 024907 (2016). arXiv:1605.03954

    Article  ADS  Google Scholar 

  4. S.T.A.R. Collaboration, Phys. Rev. Lett. 97, 162301 (2006). arXiv:nucl-ex/0604018

    Article  Google Scholar 

  5. PHENIX Collaboration, Phys. Rev. C 77 (2008) 011901, arXiv:0705.3238

  6. ATLAS Collaboration, Phys. Rev. Lett. 105 (2010) 252303, arXiv:1011.6182

  7. C.M.S. Collaboration, Phys. Rev. C 84, 024906 (2011) . arXiv:1102.1957

  8. ALICE Collaboration, Phys. Lett. B 746, 1 (2015). arXiv:1502.01689

  9. J. Casalderrey-Solana, C.A. Salgado, Acta Phys. Polon. B 38, 3731 (2007). arXiv:0712.3443

    ADS  Google Scholar 

  10. D. d’Enterria, Jet quenching: Datasheet from Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms, Volume 23: “Relativistic Heavy Ion Physics” in SpringerMaterials, Springer (2010). arXiv:0902.2011

  11. U. A. Wiedemann, Jet quenching in heavy ion collisions: Datasheet from Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms, Volume 23: “Relativistic Heavy Ion Physics” in SpringerMaterials, Springer (2010). arXiv:0908.2306

  12. A. Majumder, M. Van Leeuwen, Prog. Part. Nucl. Phys. 66, 41 (2011). arXiv:1002.2206

    Article  ADS  Google Scholar 

  13. S.D. Drell, T. Yan, Phys. Rev. Lett. 25, 316 (1970)

    Article  ADS  Google Scholar 

  14. F. Arleo et al., JHEP 01, 129 (2019). arXiv:1810.05120

    Article  ADS  Google Scholar 

  15. H.X. Xing et al., Nucl. Phys. A 879, 77 (2012). arXiv:1110.1903

    Article  ADS  Google Scholar 

  16. F. Arleo, C. Naïm, JHEP 07, 220 (2020). arXiv:2004.07188

    Article  ADS  Google Scholar 

  17. G.T. Garvey, J.C. Peng, Phys. Rev. Lett. 90, 092302 (2003). arXiv:hep-ph/0208145

    Article  ADS  Google Scholar 

  18. R.B. Neufeld et al., Phys. Lett. B 704, 590 (2011). arXiv:1010.3708

    Article  ADS  Google Scholar 

  19. L.H. Song, C.G. Duan, N. Liu, Phys. Lett. B 708, 68 (2012). arXiv:1206.3815

    Article  ADS  Google Scholar 

  20. C.G. Duan et al., Eur. Phys. J. C 50, 585 (2007). arXiv:hep-ph/0609057

    Article  ADS  Google Scholar 

  21. C.G. Duan et al., Eur. Phys. J. C 29, 557 (2003). arXiv:hep-ph/0405113

    Article  ADS  Google Scholar 

  22. C.G. Duan et al., Eur. Phys. J. C 39, 179 (2005). arXiv:hep-ph/0601188

    Article  ADS  Google Scholar 

  23. C.G. Duan et al., Phys. Rev. C 79, 048201 (2009). arXiv:0811.0675

    Article  ADS  Google Scholar 

  24. R. Baier et al., Nucl. Phys. B 484, 265 (1997). arXiv:hep-ph/9608322

    Article  ADS  Google Scholar 

  25. R. Baier et al., Annu. Rev. Nucl. Part. Sci. 50, 37 (2000). arXiv:hep-ph/0002198

    Article  ADS  Google Scholar 

  26. R. Baier, Nucl. Phys. A 715, 209c (2003). arXiv:hep-ph/0209038

    Article  ADS  Google Scholar 

  27. P. Bordalo et al., Phys. Lett. B 193, 373 (1987)

    Article  ADS  Google Scholar 

  28. D.M. Alde et al., Phys. Rev. Lett. 66, 2285 (1991)

    Article  ADS  Google Scholar 

  29. Z.B. Kang et al., Phys. Rev. Lett. 112, 102001 (2014). arXiv:1310.6759

    Article  ADS  Google Scholar 

  30. P. Ru, et al., arXiv:1907.11808

  31. A. Kumar et al., Phys. Rev. C 101, 3,034908 (2020). arXiv:1909.03178

    Google Scholar 

  32. T. X. Bai, C. G. Duan, arXiv:2011.14350v2

  33. F. Arleo, JHEP 11, 044 (2002). arXiv:hep-ph/0210104

    Article  ADS  Google Scholar 

  34. A. Airapetian et al., HERMES Collaboration. Eur. Phys. J. A 47, 113 (2011). arXiv:1107.3496

  35. A. Airapetian et al., HERMES Collaboration. Phys. Lett. B 684, 114 (2010). arXiv:0906.2478

  36. P. J. Lin, Ph.D. Thesis, Colorado University (2017)

  37. M.A. Vasiliev et al., Phys. Rev. Lett. 83, 2304 (1999). arXiv:hep-ex/9906010

    Article  ADS  Google Scholar 

  38. B. Povh et al., Particles and Nuclei, 7th edn. (Springer, Heidelberg, 2015)

    Book  Google Scholar 

  39. N. Liu et al., Phys. Lett. B 749, 88 (2015). arXiv:1511.00767

    Article  ADS  Google Scholar 

  40. M. Hirai, S. Kumano, M. Miyama, Phys. Rev. D 64, 034003 (2001). arXiv:hep-ph/0103208

    Article  ADS  Google Scholar 

  41. R. Baier et al., Nucl. Phys. B 483, 291 (1997). arXiv:hep-ph/9607355

    Article  ADS  Google Scholar 

  42. R. Baier et al., Nucl. Phys. B 531, 403 (1998). arXiv:hep-ph/9804212

    Article  ADS  Google Scholar 

  43. R. Baier et al., JHEP 09, 033 (2001). arXiv:hep-ph/0106347

    Article  ADS  Google Scholar 

  44. F. James, CERN Program Library Long Writeup D506

  45. K. Golec-Biernat, M. Wüsthoff, Phys. Rev. D 59, 014017 (1998). arXiv:hep-ph/9807513

    Article  ADS  Google Scholar 

  46. K. Golec-Biernat, S. Sapeta, JHEP 1803, 102 (2018). arXiv:1711.11360

    Article  ADS  Google Scholar 

  47. A. Bursche, et al., Technical Report LHCb-PUB-2018-015, CERN-LHCb-PUB-2018-015(2018)

Download references

Acknowledgements

We thank Professor Zhi-Hui Guo for interesting and useful discussions. This work is supported in part by the National Natural Science Foundation of China (11575052, 11975090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Gui Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, TX., Duan, CG. Bjorken variable and scale dependence of quark transport coefficient in Drell–Yan process for proton incident on nucleus. Eur. Phys. J. Plus 136, 649 (2021). https://doi.org/10.1140/epjp/s13360-021-01618-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01618-2

Navigation