Skip to main content
Log in

The Tandem Accelerator Laboratory of NCSR “Demokritos”: current status and perspectives

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Tandem Accelerator Laboratory of NCSR “Demokritos,” Athens, Greece, is presented. A technical description of the laboratory, the installed setups together with currently implemented upgrades and associated funded projects are given. A few highlights as well as future upgrade plans and access possibilities to external users are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. Meisel et al., Phys. Proc. 90, 448 (2017). https://doi.org/10.1016/j.phpro.2017.09.050

    Article  ADS  Google Scholar 

  2. T. Paradellis, C.A. Kalfas, Z. Phys. 271, 79 (1974). https://doi.org/10.1007/BF01676376

    Article  ADS  Google Scholar 

  3. C.A. Kalfas et al., J. Phys. G: Nucl. Phys. 1, 613 (1975). https://doi.org/10.1088/0305-4616/1/6/008

    Article  ADS  Google Scholar 

  4. C.A. Kalfas, J. Phys. G: Nucl. Phys. 3, 929 (1977). https://doi.org/10.1088/0305-4616/3/7/007

    Article  ADS  Google Scholar 

  5. T. Paradellis, G. Vourvopoulos, Phys. Rev. C 18, 660 (1978). https://doi.org/10.1103/PhysRevC.18.660

    Article  ADS  Google Scholar 

  6. T. Paradellis, C.A. Kalfas, Phys. Rev. C 25, 350 (1982). https://doi.org/10.1103/PhysRevC.25.350

    Article  ADS  Google Scholar 

  7. G. Vourvopoulos et al., Nucl. Instrum. Methods Phys. Res. 220, 23 (1984). https://doi.org/10.1016/0167-5087(84)90402-2

    Article  ADS  Google Scholar 

  8. G. Vourvopoulos et al., Proceedings of the International Conference on Nuclear Data for Science and Technology, Antwerp, Belgium, 1982, edited by K. H. Böckhoff (Springer, Dordrecht, The Netherlands, 1983), p. 854 (available online at https://doi.org/10.1007/978-94-009-7099-1_191)

  9. C. Rolfs, S. Harissopulos, Nucl. Phys. A 718, x (2003). https://doi.org/10.1016/S0375-9474(03)00778-4

    Article  Google Scholar 

  10. G. Bogaert et al., Nucl. Instrum. Methods Phys. Res. B 89, 8 (1994). https://doi.org/10.1016/0168-583X(94)95135-7

    Article  ADS  Google Scholar 

  11. The APAPES Home Page http://apapes.physics.uoc.gr/

  12. S.V. Harissopulos, Eur. Phys. J. Plus 133, 332 (2018). https://doi.org/10.1140/epjp/i2018-12185-8

    Article  Google Scholar 

  13. V. Foteinou et al., Phys. Rev. C 97, 035806 (2018). https://doi.org/10.1103/PhysRevC.97.035806

    Article  ADS  Google Scholar 

  14. F. Hammache et al., Phys. Rev. Lett. 86, 3985 (2001). https://doi.org/10.1103/PhysRevLett.86.3985

    Article  ADS  Google Scholar 

  15. P. Tsagari et al., Phys. Rev. C 70, 015802 (2004). https://doi.org/10.1103/PhysRevC.70.015802

    Article  ADS  Google Scholar 

  16. A. Spyrou et al., Phys. Rev. C 76, 015802 (2007). https://doi.org/10.1103/PhysRevC.76.015802

    Article  ADS  Google Scholar 

  17. A. Spyrou et al., Phys. Rev. C 77, 065801 (2008). https://doi.org/10.1103/PhysRevC.77.065801

    Article  ADS  Google Scholar 

  18. S. Harissopulos et al., Phys. Rev. C 87, 025806 (2013). https://doi.org/10.1103/PhysRevC.87.025806

    Article  ADS  Google Scholar 

  19. V. Foteinou et al., Eur. Phys. J. A 55, 67 (2019). https://doi.org/10.1140/epja/i2019-12738-x

    Article  ADS  Google Scholar 

  20. N.H. Medina et al., APH N.S. Heavy Ion Phys. 2, 141 (1995). https://link.springer.com/article/10.1007/BF03055104

  21. D. Testov et al., Proceedings of the International Symposium on Exotic Nuclei EXON-2018, Petrozavodsk, Russia, 2018, edited by Yu. E. Penionzhkevich and Yu. G. Sobolev (World Scientific Publishing, Singapore, 2019), p. 470 https://doi.org/10.1142/9789811209451_0068

  22. E.P. Benis et al., Atoms 6, 66 (2018). https://doi.org/10.3390/atoms6040066

    Article  ADS  Google Scholar 

  23. I. Madesis et al., State-of-the-Art Reviews on Energetic Ion-Atom and Ion-Molecule Collisions, Vol. 2, edited by Dz. Belkić, I. Bray, and A. Kadyrov, (World Scientific: Singapore, 2019), Chap. 1, pp. 1–31 https://doi.org/10.1142/11588

  24. I. Madesis et al., Phys. Rev. Lett. 124, 113401 (2020). https://doi.org/10.1103/PhysRevLett.124.113401

    Article  ADS  Google Scholar 

  25. G. Apostolopoulos et al., Nuclear Mater. Energy 9, 465 (2016). https://doi.org/10.1016/j.nme.2016.09.007

    Article  Google Scholar 

  26. D. Sokaras et al., Nucl. Instrum. Methods Phys. Res. B 269, 519 (2011). https://doi.org/10.1016/j.nimb.2011.01.002

    Article  ADS  Google Scholar 

  27. R. Vlastou et al., Phys. Proc. 66, 425 (2015). https://doi.org/10.1016/j.phpro.2015.05.053

    Article  ADS  Google Scholar 

  28. A. Kalamara et al., Eur. Phys. J. A 55, 187 (2019). https://doi.org/10.1140/epja/i2019-12879-x

    Article  ADS  Google Scholar 

  29. S. Harissopulos et al., Phys. Rev. C 72, 062801(R) (2005). https://doi.org/10.1103/PhysRevC.72.062801

    Article  ADS  Google Scholar 

  30. E. Ntemou et al., Nucl. Instrum. Methods Phys. Res. B 461, 124 (2019). https://doi.org/10.1016/j.nimb.2019.09.044

    Article  ADS  Google Scholar 

  31. M. Kokkoris et al., Nucl. Instrum. Methods Phys. Res. B 450, 31 (2019). https://doi.org/10.1016/j.nimb.2018.08.034

    Article  ADS  Google Scholar 

  32. V. Foteinou et al., Nucl. Instrum. Methods Phys. Res. B 396, 1 (2017). https://doi.org/10.1016/j.nimb.2017.01.087

    Article  ADS  Google Scholar 

  33. S. Galanopoulos et al., Phys. Rev. C 67, 015801 (2003). https://doi.org/10.1103/PhysRevC.67.015801

    Article  ADS  Google Scholar 

  34. S. Harissopulos et al., J. Phys. G: Nucl. Part. Phys. 31, S1417 (2005). https://doi.org/10.1088/0954-3899/31/10/006

    Article  Google Scholar 

  35. S. Harissopulos et al., Phys. Rev. C 93, 025804 (2016). https://doi.org/10.1103/PhysRevC.93.025804

    Article  ADS  Google Scholar 

  36. E. Georgali et al., Phys. Rev. C 98, 014622 (2018). https://doi.org/10.1103/PhysRevC.98.014622

    Article  ADS  Google Scholar 

  37. E. Georgali et al., Phys. Rev. C 102, 034610 (2020). https://doi.org/10.1103/PhysRevC.102.034610

    Article  ADS  Google Scholar 

  38. E. Ntemou et al., Nucl. Instrum. Methods Phys. Res. B 459, 90 (2019). https://doi.org/10.1016/j.nimb.2019.08.032

    Article  ADS  Google Scholar 

  39. E. Ntemou et al., Nucl. Instrum. Methods Phys. Res. B 450, 24 (2019). https://doi.org/10.1016/j.nimb.2018.02.033

    Article  ADS  Google Scholar 

  40. P. Tsavalas et al., Nucl. Instrum. Methods Phys. Res. B 479, 205 (2020). https://doi.org/10.1016/j.nimb.2020.07.002

    Article  ADS  Google Scholar 

  41. M. Axiotis et al., Nucl. Instrum. Methods Phys. Res. B 423, 92 (2018). https://doi.org/10.1016/j.nimb.2018.03.030

    Article  ADS  Google Scholar 

  42. M. Kokkoris et al., Nucl. Instrum. Methods Phys. Res. B 405, 50 (2017). https://doi.org/10.1016/j.nimb.2017.05.021

    Article  ADS  Google Scholar 

  43. P. Dimitriou et al., Nucl. Instrum. Methods Phys. Res. B 371, 33 (2016). https://doi.org/10.1016/j.nimb.2015.09.052

    Article  ADS  Google Scholar 

  44. IAEA-TECDOC-1822 (2017): https://www.iaea.org/publications/12235/development-of-a-reference-database-for-particle-induced-gamma-ray-emission-pige-spectroscopy

  45. K. Preketes-Sigalas et al., Nucl. Instrum. Methods Phys. Res. B 368, 71 (2016). https://doi.org/10.1016/j.nimb.2015.11.041

    Article  ADS  Google Scholar 

  46. K. Preketes-Sigalas et al., Nucl. Instrum. Methods Phys. Res. B 386, 4 (2016). https://doi.org/10.1016/j.nimb.2016.08.020

    Article  ADS  Google Scholar 

  47. A. Lagoyannis, K. Preketes-Sigalas, Particle Induced Gamma Ray Emission COde, Tandem Accelerator Laboratory, NCSR “Demokritos”: http://tandem.inp.demokritos.gr/pigreco/

  48. C. Zacharaki et al., Appl. Phys. Lett. 114, 112901 (2019). https://doi.org/10.1063/1.5090036

    Article  ADS  Google Scholar 

  49. J. González-López et al., Minerals 7, 23 (2017). https://doi.org/10.3390/min7020023

    Article  Google Scholar 

  50. I. Fasaki et al., Appl. Phys. A 91, 487 (2008). https://doi.org/10.1007/s00339-008-4435-0

    Article  ADS  Google Scholar 

  51. A. Lagoyannis et al., Nucl. Fusion 57, 076027 (2017). https://doi.org/10.1088/1741-4326/aa6ec1

    Article  ADS  Google Scholar 

  52. P. Tsavalas et al., Phys. Scr. T170, 014049 (2017). https://doi.org/10.1088/1402-4896/aa8ff4

    Article  ADS  Google Scholar 

  53. Nuclear-reaction code TALYS-1.95 (available online at: http://www.talys.eu/home)

  54. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0

    Article  ADS  Google Scholar 

  55. E. Bauge, J.P. Delaroche, M. Girod, Phys. Rev. C 63, 024607 (2001). https://doi.org/10.1103/PhysRevC.63.024607

    Article  ADS  Google Scholar 

  56. E. Bauge, J.P. Delaroche, M. Girod, Phys. Rev. C 58, 1118 (1998). https://doi.org/10.1103/PhysRevC.58.1118

Download references

Acknowledgements

We acknowledge support of this work by the project CALIBRA/EYIE (MIS 5002799), which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructures,” funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund). The external ion beam setup was funded by the program ATT 29, PEP Attikis, cofunded by the Greek General Secretariat of Research and Technology, Ministry of Development and the EU. The APAPES project has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) Research Funding Program: THALES. Investing in knowledge society through the European Social Fund, Grant No. MIS 377289. The IR2 facility has been supported within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053. The relevant views and opinions expressed do not necessarily reflect those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Harissopulos.

Additional information

Focus Point on Small and Medium Particle Accelerator Facilities in Europe Guest editors: M.A. Ramos, J. Gómez-Camacho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harissopulos, S., Andrianis, M., Axiotis, M. et al. The Tandem Accelerator Laboratory of NCSR “Demokritos”: current status and perspectives. Eur. Phys. J. Plus 136, 617 (2021). https://doi.org/10.1140/epjp/s13360-021-01596-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01596-5

Navigation