Skip to main content
Log in

Frequency control of cross-ply magnetostrictive viscoelastic plates resting on Kerr-type elastic medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present study, a higher-order shear deformation plate theory with hyperbolic shape function is used to analyze vibration suppression of a novel design of a cross-ply composite plate that contains a homogenous core and viscoelastic faces and is embedded in three-parameter Kerr’s foundation. Two magnetostrictive actuating layers and simple velocity feedback control are employed for vibration control of the sandwich plate. Kelvin–Voigt viscoelastic relation is utilized to model faces of the viscoelastic material. The system of the governing equations is formulated utilizing Hamilton’s principle and using Navier’s approach to solve the system analytically. Comprehensive parametric studies are carried out to assess influences of the magnitude of the feedback control gain, magnetostrictive layer location, thickness ratio, aspect ratio, viscoelastic layer thickness-to-core thickness ratio, magnetostrictive layer thickness-to-core thickness ratio, half wave numbers, orientations of the viscoelastic layer’s fiber, and foundation on the vibration suppression characteristics of plates. The present results show that the combination of the passive and active strategies for vibration damping of the structures can develop control systems of the structural applications excellently. Further, the use of the Kerr-type foundation model can improve the vibration suppression characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. M.J. Goodfriend, K.M. Shoop, Adaptive characteristics of the magnetostrictive alloy, Terfenol-D, for active vibration control. J. Intell. Mater. Syst. Struct. 3, 245–254 (1992)

    Article  Google Scholar 

  2. M. Anjanappa, J. Bi, Modelling, design and control of embedded Terfenol-D actuator. Smart Struct. Intel. Syst. 1917, 908–918 (1993)

    Google Scholar 

  3. M. Anjanappa, J. Bi, A theoretical and experimental study of magnetostrictive mini actuators. Smart Mater. Struct. 1, 83–91 (1994)

    Article  ADS  Google Scholar 

  4. M.W. Hiller, M.D. Bryant, J. Umegaki, Attenuation and transformation of vibration through active control of magnetostrictive Terfenol. J. Sound Vib. 134, 507–519 (1989)

    Article  ADS  Google Scholar 

  5. J.N. Reddy, J.I. Barbosa, On vibration suppression of magnetostrictive beams. Smart Mater. Struct. 9, 49–58 (2000)

    Article  ADS  Google Scholar 

  6. S.C. Pradhan, T.Y. Ng, K.Y. Lam, J.N. Reddy, Control of laminated composite plates using magnetostrictive layers. Smart Mater. Struct. 10, 657–667 (2001)

    Article  ADS  Google Scholar 

  7. S.C. Pradhan, Vibration suppression of FGM shells using embedded magnetostrictive layers. Int. J. Solids Struct. 42, 2465–2488 (2005)

    Article  MATH  Google Scholar 

  8. Y. Zhang, H. Zhou, Y. Zhou, Vibration suppression of cantilever laminated composite plate with nonlinear giant magnetostrictive material layers. Acta Mech. Solida Sin. 28, 50–60 (2015)

    Article  Google Scholar 

  9. P. Subramanian, Vibration suppression of symmetric laminated composite beams. Smart Mater. Struct. 11(6), 880–885 (2002)

    Article  ADS  Google Scholar 

  10. J.S. Kumar, N. Ganesan, S. Swarnamani, C. Padmanabhan, Active control of beam with magnetostrictive layer. Comput. Struct. 81(13), 1375–1382 (2003)

    Article  Google Scholar 

  11. J.S. Kumar, N. Ganesan, S. Swarnamani, C. Padmanabhan, Active control of simply supported plates with a magnetostrictive layer. Smart Mater. Struct. 13(3), 487–492 (2004)

    Article  ADS  Google Scholar 

  12. H.M. Zhou, Y.H. Zhou, Vibration suppression of laminated composite beams using actuators of giant magnetostrictive materials. Smart Mater. Struct. 16(1), 198–206 (2007)

    Article  ADS  Google Scholar 

  13. A.V.K. Murty, M. Anjanappa, Y.-F. Wu, The use of magnetostrictive particle actuators for vibration attenuation of flexible beams. J. Sound Vib. 206(2), 133–149 (1997)

    Article  ADS  Google Scholar 

  14. S.D. Suman, C.K. Hirwani, A. Chaturvedi, S.K. Panda, Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure, in IOP Conference Series: Materials Science and Engineering. vol. 178, p. 012026 (2017)

  15. J.N. Reddy, On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21(7), 568–593 (1999)

    Article  Google Scholar 

  16. D.B. Koconis, L.P. Kollar, G.S. Springer, Shape control of composite plates and shells with embedded actuators I: voltage specified. J. Compos. Mater. 28, 415–458 (1994)

    Article  ADS  Google Scholar 

  17. S.J. Lee, J.N. Reddy, F. Rostamabadi, Transient analysis of laminated composite plates with embedded smart-material layers. Fin. Elem. Anal. Des. 40, 463–483 (2004)

    Article  Google Scholar 

  18. B. Bhattacharya, B.R. Vidyashankar, S. Patsias, G.R. Tomlinson, Active and passive vibration control of flexible structures using a combination of magnetostrictive and ferro-magnetic alloys. Proc. SPIE. Smart Struct. Mater. 4073, 204–214 (2000)

    ADS  Google Scholar 

  19. A.M. Zenkour, H.D. El-Shahrany, Vibration suppression analysis for laminated composite beams contain actuating magnetostrictive layers. J. Comput. Appl. Mech. 50(1), 69–75 (2019)

    Google Scholar 

  20. A.M. Zenkour, H.D. El-Shahrany, Control of a laminated composite plate resting on Pasternak’s foundations using magnetostrictive layers. Arch. Appl. Mech. 90, 1943–1959 (2020)

    Article  ADS  Google Scholar 

  21. A.M. Zenkour, H.D. El-Shahrany, Vibration suppression of advanced plates embedded magnetostrictive layers via various theories. J. Mater. Res. Tech. 9(3), 4727–4748 (2020)

    Article  Google Scholar 

  22. A.M. Zenkour, H.D. El-Shahrany, Vibration suppression of magnetostrictive laminated beams resting on viscoelastic foundation. Appl. Math. Mech. 41, 1269–1286 (2020)

    Article  MATH  Google Scholar 

  23. A.M. Zenkour, H.D. El-Shahrany, Hygrothermal vibration of adaptive composite magnetostrictive laminates supported by elastic substrate medium. Eur. J. Mech / A Solids 85, 104140 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. G. Shankar, S.K. Kumar, P.K. Mahato, Vibration analysis and control of smart composite plates with delamination and under hygrothermal environment. Thin-Walled Struct. 116, 53–68 (2017)

    Article  Google Scholar 

  25. A.M. Zenkour, M.N.M. Allam, M. Sobhy, Bending of a fiber-reinforced viscoelastic composite plate resting on elastic foundations. Arch. Appl. Mech. 81(1), 77–96 (2011)

    Article  ADS  MATH  Google Scholar 

  26. A.M. Zenkour, M.N.M. Allam, M. Sobhy, Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundations. Acta Mech. 212(3), 233–252 (2010)

    Article  MATH  Google Scholar 

  27. S. Alimirzaei, M. Sadighi, A. Nikbakht, Wave propagation analysis in viscoelastic thick composite plates resting on visco-Pasternak foundation by means of quasi-3D sinusoidal shear deformation theory. Europ. J. Mech. A/Solids 74, 1–15 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. A.M. Zenkour, M.N.M. Allam, M. Sobhy, Effect of transverse normal and shear deformation on a fiber-reinforced viscoelastic beam resting on two-parameter elastic foundations. Int. J. Appl. Mech. 2(1), 87–115 (2010)

    Article  Google Scholar 

  29. M.N.M. Allam, A.M. Zenkour, Bending response of a fiber-reinforced viscoelastic arched bridge model. Appl. Math. Model 27, 233–248 (2003)

    Article  MATH  Google Scholar 

  30. A.M. Zenkour, Thermal effects on the bending response of fiber-reinforced viscoelastic composite plates using a sinusoidal shear deformation theory. Acta Mech. 171(3–4), 171–187 (2004)

    Article  MATH  Google Scholar 

  31. A.M. Zenkour, M. Sobhy, Nonlocal piezo-hygrothermal analysis for vibration characteristics of a piezoelectric Kelvin-Voigt viscoelastic nanoplate embedded in a viscoelastic medium. Acta Mech. 229(1), 3–19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. A.H. Sofiyev, Z. Zerin, N. Kuruoglu, Dynamic behavior of FGM viscoelastic plates resting on elastic foundations. Acta Mech. 231, 1–17 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. A.M. Zenkour, H.D. El-Shahrany, Hygrothermal effect on vibration of magnetostrictive viscoelastic sandwich plates supported by Pasternak’s foundations. Thin-Walled Struct. 157, 107007 (2020)

    Article  Google Scholar 

  34. A.M. Zenkour, H.D. El-Shahrany, Quasi-3D theory for the vibration of a magnetostrictive laminated plate on elastic medium with viscoelastic core and faces. Compos. Struct. 257, 113091 (2021)

    Article  Google Scholar 

  35. P.L. Pasternak, On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants. (Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, Moscow, 1954)

  36. O. Civalek, B. Uzun, M.O. Yaylı, B. Akgoz, Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus 135, 381 (2020)

    Article  Google Scholar 

  37. E. Allahyari, M. Asgari, F. Pellicano, Nonlinear strain gradient analysis of nanoplates embedded in an elastic medium incorporating surface stress effects. Eur. Phys. J. Plus 134, 191 (2019)

    Article  Google Scholar 

  38. A.D. Kerr, Elastic and viscoelastic foundation models. J. Appl. Mech. 31(3), 491–498 (1964)

    Article  ADS  MATH  Google Scholar 

  39. A.D. Kerr, A study of a new foundation model. Acta Mech. 1(2), 135–147 (1965)

    Article  Google Scholar 

  40. M.R. Barati, A.M. Zenkour, Forced vibration of sinusoidal FG nanobeams resting on hybrid Kerr foundation in hygro-thermal environments. Mech. Adv. Mater. Struct. 25(8), 669–680 (2018)

    Article  Google Scholar 

  41. M.R. Barati, Investigating dynamic response of porous inhomogeneous nanobeams on hybrid Kerr foundation under hygro-thermal loading. Appl. Phys. A 123(5), 332 (2017)

    Article  ADS  Google Scholar 

  42. D. Shahsavari, M. Shahsavari, L. Li, B. Karami, A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp. Sci. Technol. 72, 134–149 (2018)

    Article  Google Scholar 

  43. D. Shahsavari, B. Karami, H.R. Fahham, L. Li, On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory. Acta Mech. 229(11), 4549–4573 (2018)

    Article  MathSciNet  Google Scholar 

  44. A.M. Zenkour, H.D. El-Shahrany, Controlled motion of viscoelastic fiber-reinforced magnetostrictive sandwich plates resting on visco-Pasternak foundation. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2020.1861395

    Article  Google Scholar 

  45. A.M. Zenkour, H.D. El-Shahrany, Hygrothermal forced vibration of a viscoelastic laminated plate with magnetostrictive actuators resting on viscoelastic foundations. Int. J Mech. Mater. Des. In press (2021).

  46. M.H. Jalaeia, O. Civalek, On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int. J. Eng. Sci. 143, 14–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf M. Zenkour.

Appendices

Appendix 1

The coefficients \(\overline{Q}_{ij}^{\left( r \right)}\) and \(\overline{q}_{ij}\) that appeared in Eqs. (7)–(9) are expanded as

$$ \overline{Q}_{11}^{\left( r \right)} = Q_{11}^{\left( r \right)} \cos^{4} \theta^{\left( r \right)} + 2\left( {Q_{12}^{\left( r \right)} + 2Q_{66}^{\left( r \right)} } \right)\cos^{2} \theta^{\left( r \right)} \sin^{2} \theta^{\left( r \right)} + Q_{22}^{\left( r \right)} \sin^{4} \theta^{\left( r \right)} , $$
$$ \overline{Q}_{12}^{\left( r \right)} = \left( {Q_{11}^{\left( r \right)} + Q_{22}^{\left( r \right)} - 4Q_{66}^{\left( r \right)} } \right)\cos^{2} \theta^{\left( r \right)} \sin^{2} \theta^{\left( r \right)} + Q_{12}^{\left( r \right)} \left( {\sin^{4} \theta^{\left( r \right)} + \cos^{4} \theta^{\left( r \right)} } \right), $$
$$ \overline{Q}_{22}^{\left( r \right)} = Q_{11}^{\left( r \right)} \sin^{4} \theta^{\left( r \right)} + 2\left( {Q_{12}^{\left( r \right)} + 2Q_{66}^{\left( r \right)} } \right)\cos^{2} \theta^{\left( r \right)} \sin^{2} \theta^{\left( r \right)} + Q_{22}^{\left( r \right)} \cos^{4} \theta^{\left( r \right)} , $$
$$ \overline{Q}_{44}^{\left( r \right)} = Q_{44}^{\left( r \right)} \cos^{2} \theta^{\left( r \right)} + Q_{55}^{\left( r \right)} \sin^{2} \theta^{\left( r \right)} , $$
$$ \overline{Q}_{55}^{\left( r \right)} = Q_{55}^{\left( r \right)} \cos^{2} \theta^{\left( r \right)} + Q_{44}^{\left( r \right)} \sin^{2} \theta^{\left( r \right)} , $$
$$ \overline{Q}_{66}^{\left( r \right)} = \left( {Q_{11}^{\left( r \right)} + Q_{22}^{\left( r \right)} - 2Q_{12}^{\left( r \right)} - 2Q_{66}^{\left( r \right)} } \right)\sin^{2} \theta^{\left( r \right)} \cos^{2} \theta^{\left( r \right)} + Q_{66}^{\left( r \right)} \left( {\sin^{4} \theta^{\left( r \right)} + \cos^{4} \theta^{\left( r \right)} } \right), $$
$$ Q_{11}^{\left( r \right)} = \frac{{E_{1} \left( {1 - {\upnu }_{23}^{\left( r \right)} {\upnu }_{32}^{\left( r \right)} } \right)}}{\Delta },{\quad}Q_{12}^{\left( r \right)} = \frac{{E_{1} \left( {{\upnu }_{21}^{\left( r \right)} + {\upnu }_{31}^{\left( r \right)} {\upnu }_{23}^{\left( r \right)} } \right)}}{\Delta }, \quad Q_{22}^{\left( r \right)} = \frac{{E_{2} \left( {1 - {\upnu }_{13}^{\left( r \right)} {\upnu }_{31}^{\left( r \right)} } \right)}}{\Delta }, $$
$$ Q_{44}^{\left( r \right)} = G_{23}^{\left( r \right)} ,{\quad}Q_{55}^{\left( r \right)} = G_{13}^{\left( r \right)} ,{\quad}Q_{66}^{\left( r \right)} = G_{12}^{\left( r \right)} , $$
$$\Delta = 1 - {{\nu }}_{21}^{\left( r \right)}{\rm{\nu }}_{12}^{\left( r \right)} - {{\nu }}_{23}^{\left( r \right)}{\nu }_{32}^{\left( r \right)} - {{\nu }}_{13}^{\left( r \right)}{\rm{\nu }}_{31}^{\left( r \right)}- 2{\rm{\nu }}_{21}^{\left( r \right)}{\nu}_{13}^{\left( r \right)}{{\nu }}_{32}^{\left( r \right)},$$
$${\nu}_{21}^{\left( r \right)} = \frac{{{\nu}_{12}^{\left( r \right)}E_{22}^{\left( r \right)}}}{{E_1^{\left( r \right)}}}, \quad {\nu}_{31}^{\left( r \right)} = \frac{{{\nu }_{13}^{\left( r \right)}E_3^{\left( r \right)}}}{{E_1^{\left( r \right)}}},\quad {\nu }_{32}^{\left( r \right)} = \frac{{{\nu }_{23}^{\left( r \right)}E_3^{\left( r \right)}}}{{E_2^{\left( r \right)}}},$$
$$ \overline{q}_{31} = q_{31} \cos^{2} \theta + q_{32} \sin^{2} \theta , \quad \overline{q}_{32} = q_{32} \cos^{2} \theta + q_{31} \sin^{2} \theta , $$
$$ \overline{q}_{14} = \left( {q_{15} - q_{24} } \right)\sin \theta \cos \theta , \quad \overline{q}_{24} = q_{24} \cos^{2} \theta + q_{15} \sin^{2} \theta , $$
$$ \overline{q}_{15} = q_{15} \cos^{2} \theta + q_{24} \sin^{2} \theta , \quad \overline{q}_{25} = \left( {q_{15} - q_{24} } \right)\sin \theta \cos \theta , $$
$$ \overline{q}_{36} = \left( {q_{31} - q_{32} } \right)\sin \theta \cos \theta , $$

where \({E}_{i}\), \({v}_{ij}\) and \({G}_{ij}\) refer to Young’s moduli, Poisson’s ratios, and shear moduli, respectively. The coefficients \({q}_{ij}\) denote the magnetostrictive modules.

Appendix 2

The coefficients \(\hat{S}_{ij}\), \(\hat{M}_{ij}\) and \(\hat{C}_{ij}\) (\(i = 1, 2, 3\)) that appeared in Eq. (31) are expanded as the following:

$$\begin{aligned} \hat{S}_{11} &= \left( {1 + \left. {{\text{g}}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {D_{11} \left( {\frac{n\pi }{a}} \right)^{4} + D_{22} \left( {\frac{m\pi }{b}} \right)^{4} + \left( {2D_{12} + 4D_{66} } \right)\left( {\frac{n\pi }{a}} \right)^{2} \left( {\frac{m\pi }{b}} \right)^{2} } \right]\\ & \quad+ \frac{{K_{P} K_{u} }}{{K_{l} + K_{u} }}\left( {\frac{n\pi }{a}} \right)^{2} + \frac{{K_{P} K_{u} }}{{K_{l} + K_{u} }}\left( {\frac{m\pi }{b}} \right)^{2} + \frac{{K_{l} K_{u} }}{{K_{l} + K_{u} }},\end{aligned}$$
$$ \hat{S}_{12} = - \left( {1 + \left. {{\text{g}}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {E_{11}^{1} \left( {\frac{n\pi }{a}} \right)^{3} + \left( {E_{21}^{1} + 2E_{66}^{1} } \right)\frac{n\pi }{a}\left( {\frac{m\pi }{b}} \right)^{2} } \right], $$
$$ \hat{S}_{13} = - \left( {1 + \left. {{\text{g}}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {E_{22}^{1} \left( {\frac{m\pi }{b}} \right)^{3} + \left( {E_{12}^{1} + 2E_{66}^{1} } \right)\left( {\frac{n\pi }{a}} \right)^{2} \frac{m\pi }{b}} \right], $$
$$ \hat{S}_{22} = \left( {1 + \left. {{\text{g}}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {E_{11}^{3} \left( {\frac{n\pi }{a}} \right)^{2} + E_{66}^{3} \left( {\frac{m\pi }{b}} \right)^{2} + E_{55}^{3} } \right], $$
$$ \hat{S}_{23} = \hat{S}_{23} = \left( {1 + \left. {{\text{g}}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {\left( {E_{12}^{3} + E_{66}^{3} } \right)\frac{n\pi }{a}\frac{m\pi }{b}} \right], $$
$$ \hat{S}_{33} = \left( {1 + \left. {{\text{g}}\frac{\partial }{\partial t}} \right|_{{r = {\text{face}}}} } \right)\left[ {E_{66}^{2} \left( {\frac{n\pi }{a}} \right)^{2} + E_{22}^{3} \left( {\frac{m\pi }{b}} \right)^{2} + E_{44}^{3} } \right], $$
$$ \hat{M}_{11} = - \beta_{31} \left( {\frac{n\pi }{a}} \right)^{2} - \beta_{32} \left( {\frac{m\pi }{b}} \right)^{2} ,\quad \hat{M}_{21} = \gamma_{31} \frac{n\pi }{a},\quad \hat{M}_{31} = \gamma_{32} \frac{m\pi }{b}, $$
$$ \hat{M}_{12} = \hat{M}_{13} = \hat{M}_{22} = \hat{M}_{23} = \hat{M}_{32} = \hat{M}_{33} = 0, $$
$$ \hat{C}_{11} = I_{2} \left[ {\left( {\frac{n\pi }{a}} \right)^{2} + \left( {\frac{m\pi }{b}} \right)^{2} } \right] + I_{0} ,{\quad}\hat{C}_{12} = - I_{e} \frac{n\pi }{a},{\quad}\hat{C}_{13} = - I_{e} \frac{m\pi }{b}, $$
$$ \hat{C}_{22} = I_{e}^{2} ,\quad \hat{C}_{23} = 0,{\quad}\hat{C}_{33} = I_{e}^{2} . $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zenkour, A.M., El-Shahrany, H.D. Frequency control of cross-ply magnetostrictive viscoelastic plates resting on Kerr-type elastic medium. Eur. Phys. J. Plus 136, 634 (2021). https://doi.org/10.1140/epjp/s13360-021-01581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01581-y

Navigation