Skip to main content
Log in

Investigation of turbulent flow structures in a wall jet can combustor: application of large eddy simulation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present paper’s main goal is to investigate the turbulence structures and combustion characteristics in a model wall jet can combustor (WJCC) employing the large eddy simulation (LES) approach. The laminar flamelet combustion and discrete ordinates radiation models are applied in an Eulerian–Lagrangian approach to simulate a reactive spray flow. The results illustrate that LES together with an appropriate mesh and a suitable time step could properly capture the coherent vortical structures, including vortex tube, streamwise and hairpin vortices throughout the model WJCC. Also, the energy cascade from the largest turbulence length scale (integral length scale) at lower frequency of the spectrum to the smallest one along with the recirculation zones is revealed suitably. At the beginning of WJCC, immediately after the swirler, a region of dense coherent structures is formed that can influence the sharp fluctuations of the droplet. In the primary and intermediate zones the hairpin vortices and in the dilutions zone the streamwise vortices are observed more. A significant temperature reduction and a maximum scalar dissipation rate are detected in the head of hairpins. Results also indicate that the strain rate and flow temperature have an inverse relationship. The greatest strain rate is visible at the center of the collision of the primary jets and the main stream, where there is minimum temperature. The largest values of temperature are detected in the intermediate zone under the influence of the largest reverse flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\({A}_{\mathrm{d}}\) :

Droplet surface area

\({B}_{\mathrm{m}}\) :

Spalding mass transfer number

\({B}_{T}\) :

Spalding heat transfer number

\({C}_{\mathrm{D}}\) :

Drag coefficient

\({c}_{\mathrm{p}}\) :

Specific heat capacity (J/kg K)

\(\mathrm{CFL}\) :

Courant (Courant–Friedrichs–Lewy) number

\(\mathrm{D}\) :

Diameter of WJCC

\({D}_{i,m}\) :

Diffusion coefficient of vapor in gas phase

\({d}_{\mathrm{p}}\) :

Diameter of droplet

\({d}_{\mathrm{si}}\) :

Swirler inside diameter

\({E}_{uu}\) :

Power spectrum density of axial velocity fluctuations

\({F}_{i}\) :

Body force in momentum equations

\(f\) :

Mixture fraction

\({{\mathop f\limits^{\prime } }}\) :

Mixture fraction variance

\(H\) :

Enthalpy

\(\mathrm{h}\) :

Heat transfer coefficient

\({h}_{fg}\) :

Latent heat of vaporization

\(k\) :

Turbulence kinetic energy

\(L\) :

Integral length scale

\({L}_{\mathrm{s}}\) :

Sub-grid length scale

LES:

Large eddy simulation

m:

Mass (kg)

\({\text{Nu}}\) :

Nusselt number

\(P\) :

Pressure (Pa)

\(p\left( f \right)\) :

Probability density function (PDF)

\({\text{Pr}}\) :

Prandtl number

PSD:

Power spectrum density

\(Q\) :

Second invariant of velocity gradient tensor

\(q_{\phi }^{{{\text{sgs}}}}\) :

Sub-grid-scale turbulent fluxes of scalars

RANS:

Reynolds-averaged Navier–Stokes

\({\text{Re}}\) :

Reynolds number

RMS:

Root mean square

RSM:

Reynolds stress model

\({\text{Sc}}\) :

Schmidt number

sgs:

Sub-grid scale

\(\dot{S}\) :

Source term

\(S_{ij}\) :

Strain rate tensor

\({\text{Sc}}_{{{\text{sgs}}}}\) :

Sub-grid-scale Schmidt number

\(T\) :

Temperature (K)

\(u_{i,j,k}\) :

Velocity component (m/s)

\(u_{\tau }\) :

Friction velocity (m/s)

\(u^{\prime } v^{\prime }\) :

Velocity component fluctuations (m/s)

\(t\) :

Time (s)

WJCC:

Wall jet can combustor

\(X,Y,Z\) :

Cartesian coordinates

\(x_{j}\) :

Cartesian coordinates

\(Y^{ + }\) :

Dimensionless wall distance

\(\alpha\) :

Coefficient in \({\text{PDF}}\) equation

\(\alpha_{i}\) :

Diffusivity coefficient of scalar \(i\)

\(\beta\) :

Coefficient in \({\text{PDF}}\) equation

\(\Delta\) :

Local grid size

\(\Delta X^{ + } ,\) \(\Delta Z^{ + }\) :

Dimensionless cell distance

\(\delta\) :

Function of delta

\(\varepsilon\) :

Dissipation rate of turbulence kinetic energy

\(\eta\) :

Kolmogorov length scale

\(\lambda\) :

Taylor length scale

\({\Gamma }\) :

Thermal conductivity \({\text{(W}}/{\text{m K}}\))

\(\mu\) :

Dynamic viscosity of continuous phase \({\text{(N s}}/{\text{m}}^{2} {)}\)

\(\nu\) :

Kinematic viscosity of continuous phase \({\text{(m}}^{2} /{\text{s)}}\)

\(\rho\) :

Density \({\text{(kg}}/{\text{m}}^{3} {)}\)

\(\tau_{ij}\) :

Stress tensor

\(\tau_{L}\) :

Large eddy time scale

\(\tau_{\lambda }\) :

Taylor time scale

\(\tau_{\eta }\) :

Kolmogorov time scale

\(\chi\) :

Scalar dissipation rate

\(\phi_{i}\) :

Scalar quantities of scalar \(i\)

\(\dot{\omega }_{i}\) :

Source in scalar equation (production rate from chemical reaction)

\(\Omega_{ij}\) :

Rotation rate tensor

\(g\) :

Gas phase (continuous phase)

\(d\) :

Droplet

References

  1. E. Khodabandeh, H. Moghadasi, M. Saffari Pour, M. Ersson, P.G. Jönsson, M.A. Rosen, A. Rahbari, Chin. J. Chem. Eng. 28(4), 1029 (2020)

    Article  Google Scholar 

  2. E. Alemi, M.R. Zargarabadi, Int. J. Therm. Sci. 112, 55 (2017)

    Article  Google Scholar 

  3. F. Bazdidi-Tehrani, S. Mirzaei, M.S. Abedinejad, Energy Fuels 31(7), 7523 (2017)

    Article  Google Scholar 

  4. C. Cameron, J. Brouwer, C. Wood, G. Samuelsen, J. Eng. Gas Turbines Power 111(1), 31 (1989)

    Article  Google Scholar 

  5. K. Li, L. Zhou, C.K. Chan, Chin. J. Chem. Eng. 22(2), 214 (2014)

    Article  Google Scholar 

  6. P.P. Popov, S.B. Pope, Combust. Flame 161(12), 3100 (2014)

    Article  Google Scholar 

  7. B. Franzelli, A. Vié, M. Boileau, B. Fiorina, N. Darabiha, Flow Turbul. Combust. 98(2), 633 (2017)

    Article  Google Scholar 

  8. P. Edge, S.R. Gubba, L. Ma, R. Porter, M. Pourkashanian, A. Williams, Proc. Combust. Inst. 33(2), 2709 (2011)

    Article  Google Scholar 

  9. L. Davidson, Sweden: Chalmers University of Technology (2015).

  10. W. Jones, A. Marquis, V. Prasad, Combust. Flame 159(10), 3079 (2012)

    Article  Google Scholar 

  11. L. Zhou, K. Li, F. Wang, Chin. J. Chem. Eng. 20(2), 205 (2012)

    Article  Google Scholar 

  12. S.K. Robinson, Annu. Rev. Fluid Mech. 23(1), 601 (1991)

    Article  ADS  Google Scholar 

  13. T. Theodorsen, in 50 Jahre Grenzschichtforschung (Springer, 1955), pp. 55.

  14. M. Xu, X. Yang, X. Long, Q. Lyu, B. Ji, Sci. China Technol. Sci. 61(1), 86 (2018)

    Article  ADS  Google Scholar 

  15. M. Bross, T. Fuchs, C.J. Kähler, J. Fluid Mech. 873, 287 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Wang, J. Zhang, H. Feng, Y. Huang, Appl. Therm. Eng. 129, 855 (2018)

    Article  Google Scholar 

  17. A. Zamiri, S.J. You, J.T. Chung, Aerosp. Sci. Technol. 100, 105793 (2020)

    Article  Google Scholar 

  18. Y. Shangguan, Heat Transfer Engineering (just-accepted), 1 (2021).

  19. A. Fossi, B. Paquet, S. Kalla, and J. M. Bergthorson, presented at the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2015 (unpublished).

  20. F. Bazdidi-Tehrani, A. Ghafouri, M. Jadidi, J. Wind Eng. Ind. Aerodyn. 121, 1 (2013)

    Article  Google Scholar 

  21. S. B. Pope, (Cambridge University Press, United Kingdom, 2000).

  22. F. Bazdidi-Tehrani, N. Bohlooli, M. Jadidi, Progr. Comput. Fluid Dyn. Int. J. 15(4), 214 (2015)

    Article  Google Scholar 

  23. F. Nicoud, F. Ducros, Flow Turbul. Combust. 62(3), 183 (1999)

    Article  Google Scholar 

  24. K.A. Kemenov, H. Wang, S.B. Pope, Combust. Theor. Model. 16(4), 611 (2012)

    Article  ADS  Google Scholar 

  25. B. Shahriari, M. Thomson, S. Dworkin, Presented at the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, 2015 (unpublished).

  26. M. Yen, V. Magi, J. Abraham, Chem. Eng. Sci. 196, 116 (2019)

    Article  Google Scholar 

  27. H. Pitsch, N. Peters, Combust. Flame 114(1), 26 (1998)

    Article  Google Scholar 

  28. K. Kundu, P. Penko, T. VanOverbeke, AIAA 99, 2218 (1999)

    Google Scholar 

  29. D. Veynante, L. Vervisch, Prog. Energy Combust. Sci. 28(3), 193 (2002)

    Article  Google Scholar 

  30. N. Peters, Turbulent combustion. (Cambridge University Press, 2000).

  31. R. Sarlak, M. Shams, R. Ebrahimi, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 226(5), 1290 (2012)

    Article  Google Scholar 

  32. W. Fiveland, J. Heat Transfer 106(4), 699 (1984)

    Article  ADS  Google Scholar 

  33. H. Zeinivand, F. Bazdidi-Tehrani, Heat Transf. Res. 42(6), 571 (2011)

    Article  Google Scholar 

  34. F. Bazdidi-Tehrani, M.S. Abedinejad, Chem. Eng. Sci. 189, 233 (2018)

    Article  Google Scholar 

  35. F.F. Dizaji, J.S. Marshall, Powder Technol. 318, 83 (2017)

    Article  Google Scholar 

  36. P. Ghose, A. Datta, A. Mukhopadhyay, J. Therm. Sci. Eng. Appl. 8(1), 011004 (2016)

    Article  Google Scholar 

  37. G. Kohnen, M. Rüger, M. Sommerfeld, ASME-Publications-FED 185, 191 (1994)

    Google Scholar 

  38. A. Berlemont, M. Grancher, G. Gouesbet, Int. J. Heat Mass Transf. 38(16), 3023 (1995)

    Article  Google Scholar 

  39. S. Morsi, A. Alexander, J. Fluid Mech. 55(02), 193 (1972)

    Article  ADS  Google Scholar 

  40. S.S. Sazhin, Prog. Energy Combust. Sci. 32(2), 162 (2006)

    Article  ADS  Google Scholar 

  41. W. A. Sirignano, Fluid dynamics and transport of droplets and sprays. (Cambridge University Press, 1999).

  42. F.F. Dizaji, J.S. Marshall, J.R. Grant, J. Fluid Mech. 862, 1 (2019)

    Article  MathSciNet  Google Scholar 

  43. W. Ranz, W. Marshall, Chem. Eng. Prog 48(3), 141 (1952)

    Google Scholar 

  44. G. Faeth, Prog. Energy Combust. Sci. 9(1), 1 (1983)

    Article  ADS  Google Scholar 

  45. F. Bazdidi-Tehrani, M.S. Abedinejad, H. Yazdani-Ahmadabadi, Heat Transf. Res. 49(17), 1667 (2018)

    Article  Google Scholar 

  46. S. I. A. F. M. Flows and M. Sommerfeld, Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multi-Phase Flows. (European Research Community on Flow, Turbulence and Combustion (ERCOFTAC), 2008).

  47. N. Ashgriz and J. Mostaghimi, Fluid Flow Handbook. (McGraw-Hill Professional, 2002).

  48. T. Smith, Z. Shen, J. Friedman, J. Heat Transfer 104(4), 602 (1982)

    Article  Google Scholar 

  49. B. Leonard, Comput. Methods Appl. Mech. Eng. 88(1), 17 (1991)

    Article  ADS  Google Scholar 

  50. T. Barth and D. Jespersen, presented at the 27th Aerospace sciences meeting, 1989 (unpublished).

  51. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. (Pearson Education, 2007).

  52. M. Jadidi, F. Bazdidi-Tehrani, M. Kiamansouri, J. Build. Perform. Simul. 11(2), 241 (2018)

    Article  Google Scholar 

  53. A.L. Marsden, O.V. Vasilyev, P. Moin, J. Comput. Phys. 175(2), 584 (2002)

    Article  ADS  Google Scholar 

  54. S. B. Pope, Turbulent Flows, 1st Edition ed. (Cambridge University Press, 2000).

  55. J. Baggett, J. Jimenez, and A. Kravchenko, Annual research briefs, 51 (1997).

  56. I. Shiryanpour, N. Kasiri, The European Physical Journal Plus 134(5), 1 (2019)

    Article  Google Scholar 

  57. J. Smagorinsky, Mon. Weather Rev. 91(3), 99 (1963)

    Article  ADS  Google Scholar 

  58. M. Germano, U. Piomelli, P. Moin, W.H. Cabot, Phys. Fluids A 3(7), 1760 (1991)

    Article  ADS  Google Scholar 

  59. U. Frisch, Turbulence: the legacy of AN Kolmogorov. (Cambridge University Press, 1995);

  60. A.N. Kolmogorov, J. Fluid Mech. 13(1), 82 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  61. J. C. Hunt, A. A. Wray, and P. Moin, (1988).

  62. J.M. Wallace, H. Eckelmann, R.S. Brodkey, J. Fluid Mech. 54(01), 39 (1972)

    Article  ADS  Google Scholar 

  63. P. Saha, G. Biswas, A. Mandal, S. Sarkar, Int. J. Heat Mass Transf. 104, 178 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Bazdidi-Tehrani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedinejad, M.S., Bazdidi-Tehrani, F. & Mirzaei, S. Investigation of turbulent flow structures in a wall jet can combustor: application of large eddy simulation. Eur. Phys. J. Plus 136, 665 (2021). https://doi.org/10.1140/epjp/s13360-021-01578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01578-7

Navigation