Skip to main content
Log in

Tachyon model of Tsallis holographic dark energy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we consider the correspondence between the tachyon dark energy model and the Tsallis holographic dark energy scenario in an FRW universe. We demonstrate the Tsallis holographic description of tachyon dark energy in an FRW universe and reconstruct the potential and basic results of the dynamics of the scalar field which describe the tachyon cosmology. In a flat universe, in the tachyon model of Tsallis holographic dark energy, independent of the existence of interaction between dark energy and matter or not, \(\dot{T}^2\) must always be zero. Therefore, the equation of state \(\omega _D\) is always \(-1\) in such a flat universe. For a non-flat universe, \(\dot{T}^2\) cannot be zero so that \(\omega _D \ne -1\) which cannot be used to explain the origin of the cosmological constant. \(\dot{T}^2\) monotonically decreases with the increase in \(\cos (R_\mathrm{h}/a)\) and \(\cosh (R_\mathrm{h}/a)\) for different \(\delta \)s. In particular, for an open universe, \(\dot{T}^2\) is always larger than zero, while for a closed universe, \(\dot{T}^2\) is always smaller than zero which is physically invalid. In addition, we conclude that with the increase in \(\cos (R_\mathrm{h}/a)\) and \(\cosh (R_\mathrm{h}/a)\), \(\dot{T}^2\) always decreases monotonically irrespective of the value of \(b^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernovae. Astron. J. 517, 565 (1999)

    Article  MATH  Google Scholar 

  3. P. Astier et al., The supernova legacy survey: measurement of \(\Omega _M\), \(\Omega _{\Lambda }\) and \(\omega \) from the first year data set. Astron. Astrophys. 447, 31 (2006)

    Article  ADS  Google Scholar 

  4. K. Abazajian et al., The second data release of the sloan digital sky survey. Astron. J. 128, 502 (2004)

    Article  ADS  Google Scholar 

  5. K. Abazajian et al., The third data release of the sloan digital sky survey. Astron. J. 129, 1755 (2005)

    Article  ADS  Google Scholar 

  6. D.N. Spergel et al., First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  7. V. Sahni, A.A. Starobinsky, The case for a positive cosmological \(\Lambda \)-term. Int. J. Mod. Phys. D 9, 373 (2000)

    Article  ADS  Google Scholar 

  8. P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. P.J.E. Peebles, B. Ratra, Cosmology with a time-variable cosmological “constant’’. Astrophys. J. 325, L17 (1988)

    Article  ADS  Google Scholar 

  10. B. Ratra, P.J.E. Peebles, Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)

    Article  ADS  Google Scholar 

  11. C. Wetterich, Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  12. J.A. Frieman, C.T. Hill, A. Stebbins, I. Waga, Cosmology with ultralight pseudo Nambu–Goldstone bosons. Phys. Rev. Lett. 75, 2077 (1995)

    Article  ADS  Google Scholar 

  13. M.S. Turner, M.J. White, CDM models with a smooth component. Phys. Rev. D 56, 4439 (1997)

    Article  ADS  Google Scholar 

  14. R.R. Caldwell, R. Dave, P.J. Steinhardt, Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  MATH  Google Scholar 

  15. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Dynamical solution to the problem of a small cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  16. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Essentials of \(k\)-essence. Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  17. R.R. Caldwell, A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  18. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phantom energy: dark energy with \(\omega < -1\) causes a cosmic doomsday. Phys. Rev. Lett. 91, 071301 (2003)

    Article  ADS  Google Scholar 

  19. R.S. Nojiri, S.D. Odintsov, Quantum de sitter cosmology and phantom matter. Phys. Lett. B 562, 147 (2003)

    Article  ADS  MATH  Google Scholar 

  20. R.S. Nojiri, S.D. Odintsov, de Sitter Brane universe induced by phantom and quantum effects. Phys. Lett. B 565, 1 (2003)

    Article  ADS  MATH  Google Scholar 

  21. A. Sen, Tachyon matter. JHEP 0207, 065 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  22. N. Arkani-Hamed, H.C. Cheng, M.A. Luty, S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity. JHEP 0405, 074 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. F. Piazza, S. Tsujikawa, Dilatonic ghost condensate as dark energy. JCAP 0407, 004 (2004)

    Article  ADS  Google Scholar 

  24. B. Feng, X.L. Wang, X.M. Zhang, Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607, 35 (2005)

    Article  ADS  Google Scholar 

  25. Z.K. Guo, Y.S. Piao, X.M. Zhang, Y.Z. Zhang, Cosmological evolution of a quintom model of dark energy. Phys. Lett. B 608, 177 (2005)

    Article  ADS  Google Scholar 

  26. X. Zhang, An interacting two-fluid scenario for quintom dark energy. Commun. Theor. Phys. 44, 762 (2005)

    Article  ADS  Google Scholar 

  27. A. Anisimov, E. Babichev, A. Vikman, B-inflation. JCAP 0506, 006 (2005)

    Article  ADS  Google Scholar 

  28. E. Elizalde, S. Nojiri, S.D. Odintsov, Late-time cosmology in a (phantom) scalar-tensor theory: dark energy and the cosmic speed-up. Phys. Rev. D 70, 043539 (2004)

    Article  ADS  Google Scholar 

  29. S. Nojiri, S.D. Odintsov, S. Tsujikawa, Properties of singularities in the (phantom) dark energy universe. Phys. Rev. D 71, 063004 (2005)

    Article  ADS  Google Scholar 

  30. C. Deffayet, G.R. Dvali, G. Gabadadze, Accelerated universe from gravity leaking to extra dimensions. Phys. Rev. D 65, 044023 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  31. L. Amendola, Coupled quintessence. Phys. Rev. D 62, 043511 (2000)

    Article  ADS  Google Scholar 

  32. A.Y. Kamenshchik, U. Moschella, V. Pasquier, An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  33. P. Horava, D. Minic, Probable values of the cosmological constant in a holographic theory. Phys. Rev. Lett. 85, 1610 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. M. Li, A model of holographic dark energy. Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  35. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026

  36. L. Susskind, The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. A. Cohen, D. Kaplan, A. Nelson, Effective field theory, black holes, and the cosmological constant. Phys. Rev. Lett. 82, 4971 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. K. Enqvist, S. Hannestad, M.S. Sloth, Searching for a holographic connection between dark energy and the low-\(l\) CMB multipoles. JCAP 0502, 004 (2005)

    Article  ADS  Google Scholar 

  39. M.R. Setare, Holographic tachyon model of dark energy. Phys. Lett. B 653, 116–121 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. S.D.H. Hsu, Entropy bounds and dark energy. Phys. Lett. B 594, 13 (2004)

    Article  ADS  Google Scholar 

  41. C. Tsallis, L.J.L. Cirto, Black hole thermodynamical entropy. Eur. Phys. J. C 73, 2487 (2013)

    Article  ADS  Google Scholar 

  42. A. Sayahian Jahromi et al., Generalized entropy formalism and a new holographic dark energy model. Phys. Lett. B 780, 21 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  43. H. Moradpour et al., Thermodynamic approach to holographic dark energy and the Rényi entropy. Eur. Phys. J. C 78, 829 (2018)

    Article  ADS  Google Scholar 

  44. M. Tavayef, A. Sheykhi, K. Bamba, H. Moradpour, Tsallis holographic dark energy. Phys. Lett. B 781, 195 (2018)

    Article  ADS  Google Scholar 

  45. S. Ghaffari et al., Tsallis holographic dark energy in the Brans–Dicke cosmology. Eur. Phys. J. C 78, 706 (2018)

    Article  ADS  Google Scholar 

  46. N. Saridakis, K. Bamba, R. Myrzakulov, Holographic dark energy through Tsallis entropy. JCAP 12, 012 (2018)

    Article  ADS  Google Scholar 

  47. M. Abdollahi Zadeh et al., Note on Tsallis holographic dark energy. Eur. Phys. J. C 78, 940 (2018)

    Article  Google Scholar 

  48. Y.S. Myung, Instability of holographic dark energy models. Phys. Lett. B 652, 223 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. E.M.C. Abreu, J. Ananias Neto, A.C.R. Mendes, A. Bonilla, Tsallis and Kaniadakis statistics from a point of view of the holographic equipartition law. EPL 121, 45002 (2018)

    Article  ADS  Google Scholar 

  50. A. Sen, Rolling tachyon. JHEP 0204, 048 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  51. A. Sen, Field theory of tachyon matter. Mod. Phys. Lett. A 17, 1797 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. A. Frolov, L. Kofman, A. Starobinsky, Prospects and problems of tachyon matter cosmology. Phys. Lett. B 545, 8 (2002)

    Article  ADS  MATH  Google Scholar 

  53. V. Gorini, A. Kamenshchik, U. Moschella, V. Pasquier, A. Starobinsky, Stability properties of some perfect fluid cosmological models. Phys. Rev. D 72, 103518 (2005)

    Article  ADS  Google Scholar 

  54. B. Wang, E. Abdalla, F. Atrio-Barandela, D. Pavon, Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures. Rep. Prog. Phys. 79, 096901 (2016)

    Article  ADS  Google Scholar 

  55. Gunjan Varshney et al., Statefinder diagnosis for interacting Tsallis holographic dark energy models with \(\omega \)-\(\omega ^{\prime }\) pair. New Astron. 70, 36–42 (2019)

    Article  ADS  Google Scholar 

  56. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D 15, 11 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. W. Fischler, L. Susskind, Holography and cosmology, hep-th/9806039

  58. S. Wang, Y. Wang, M. Li, Holographic dark energy. Phys. Rep. 696, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. S. Waheed, Reconstruction paradigm in a class of extended teleparallel theories using Tsallis holographic dark energy. Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  60. U.K. Sharma, Reconstruction of quintessence field for the THDE with swampland correspondence in \(f(R,T)\) gravity, arXiv:2005.03979v1

  61. P.S. Ens, A.F. Santos, \(f(R)\) gravity and Tsallis holographic dark energy. EPL 131, 4 (2020)

    Article  Google Scholar 

  62. Yang Liu, Interacting ghost dark energy in complex quintessence theory. Eur. Phys. J. C 80, 1204 (2020)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y. Tachyon model of Tsallis holographic dark energy. Eur. Phys. J. Plus 136, 579 (2021). https://doi.org/10.1140/epjp/s13360-021-01573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01573-y

Navigation