Skip to main content
Log in

Nonlinear interaction underlying flow structure transition of inclined oil–water two-phase countercurrent flow

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Inclined oil–water two-phase flow exhibits random, unstable spatiotemporal structure, associated with the countercurrent caused by gravity and components interacting. In this paper, the nonlinear analysis to give a deeper understanding of inclined oil–water two-phase flow has been conducted. Firstly, we obtained the multivariate measurement of different flow patterns by vertical multi-electrode array system. Then, based on the multivariate refined composite entropy and transfer entropy, a dynamic nonlinear analysis framework is proposed to characterize the inclined oil–water two-phase flow. The results suggest that the proposed framework can reveal the dynamic information hidden in the oil droplet swarms and countercurrent water motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Mukherjee, J.P. Brill, H.D. Beggs, J. Energ. Resour-ASME 103, 56 (1981)

    Article  Google Scholar 

  2. A.D. Hill, T. Oolman, J. Petrol. Technol. 34, 2432 (1982)

    Article  Google Scholar 

  3. G. Oddie, H. Shi, L.J. Durlofsky, Int. J. Multiph. Flow 29, 527 (2003)

    Article  Google Scholar 

  4. G.P. Lucas, N.D. Jin, Meas. Sci. Technol. 12, 1546 (2001)

    Article  ADS  Google Scholar 

  5. G.P. Lucas, N.D. Jin, Meas. Sci. Technol. 12, 1529 (2001)

    Article  ADS  Google Scholar 

  6. F. Zavareh, A.D. Hill, A.L. Podio, SPE J. 21, 18215 (1988)

    Google Scholar 

  7. G. Litak, G. Gorski, R. Mosdorf, A. Rysak, Mech. Syst. Signal Process. 89, 48 (2017)

    Article  ADS  Google Scholar 

  8. P. Vigneaux, P. Chenais, J.P. Hulin, AIChE J. 34, 781 (1988)

    Article  Google Scholar 

  9. G. Gorski, G. Litak, R. Mosdorf, A. Rysak, Eur. Phys. J. Plus 131, 111 (2016)

    Article  Google Scholar 

  10. J.Y.L. Lum, T. Al-Wahaibi, P. Angeli, Int. J. Multiph. Flow 32, 413 (2006)

    Article  Google Scholar 

  11. Y.B. Zong, N.D. Jin, Eur. Phys. J-Spec. Top. 164, 165 (2008)

    Article  Google Scholar 

  12. Y.B. Zong, N.D. Jin, Z.Y. Wang, Z.K. Gao, C. Wang, Int. J. Multiph. Flow 36, 166 (2010)

    Article  Google Scholar 

  13. Z.K. Gao, N.D. Jin, W.X. Wang, Y.C. Lai, Phys. Rev. E 82, 016210 (2010)

    Article  ADS  Google Scholar 

  14. L. Zhu, N.D. Jin, Z.K. Gao, Y.B. Zong, Chem. Eng. Sci. 66, 6099 (2011)

    Article  Google Scholar 

  15. L. Zhu, N.D. Jin, Z.K. Gao, Y.B. Zong, Pet. Sci. 11, 111 (2014)

    Article  ADS  Google Scholar 

  16. S.M. Pincus, P. Natl, Acad. Sci. USA 88, 2297 (1991)

    Article  ADS  Google Scholar 

  17. J.S. Richman, J.R. Moorman, Am. J. Physiol-Heart C. 278, 2039 (2000)

    Article  Google Scholar 

  18. C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002)

    Article  ADS  Google Scholar 

  19. B. Fadlallah, B. Chen, A. Keil, J. Príncipe, Phys. Rev. E 87, 022911 (2013)

    Article  ADS  Google Scholar 

  20. M.U. Ahmed, D.P. Mandic, Phys. Rev. E 84, 061918 (2011)

    Article  ADS  Google Scholar 

  21. S.D. Wu, C.W. Wu, S.G. Lin, C.C. Wang, K.Y. Lee, Entropy 15, 1069 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. S.D. Wu, C.W. Wu, S.G. Lin, C.C. Wang, K.Y. Lee, C.K. Peng, Phys. Lett. A 378, 1369 (2014)

    Article  ADS  Google Scholar 

  23. A. Humeau-Heurtier, Phys. Lett. A 380, 1426 (2016)

    Article  ADS  Google Scholar 

  24. T. Schreiber, Phys. Rev. Lett. 85, 461 (2000)

    Article  ADS  Google Scholar 

  25. M. Staniek, K. Lehnertz, Phys. Rev. Lett. 100, 158101 (2008)

    Article  ADS  Google Scholar 

  26. J. Runge, J. Heitzig, V. Petoukhov, J. Kurths, Phys. Rev. Lett. 108, 258701 (2012)

    Article  ADS  Google Scholar 

  27. L.S. Zhai, P. Angeli, N.D. Jin, D.S. Zhou, L. Zhu, Int. J. Multiph. Flow 92, 39 (2017)

    Article  Google Scholar 

  28. N.D. Jin, Z. Xin, J. Wang, Z.Y. Wang, X.H. Jia, W.P. Chen, Meas. Sci. Technol. 19, 045403 (2008)

    Article  ADS  Google Scholar 

  29. D.L. Jones, R.G. Baraniuk, IEEE Trans. Signal Process. 43, 2361 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant Nos. 42074142, 51527805, 11572220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningde Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, W., Jin, N. Nonlinear interaction underlying flow structure transition of inclined oil–water two-phase countercurrent flow. Eur. Phys. J. Plus 136, 560 (2021). https://doi.org/10.1140/epjp/s13360-021-01555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01555-0

Navigation