Skip to main content
Log in

Assessment of gamma-radiation attenuation characteristics of Bi2O3–B2O3–SiO2–Na2O glasses using Geant4 simulation code

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This work aims to study the radiation shielding properties of Bi2O3–B2O3 –SiO2–Na2O glasses (coded as BBS-glasses) using the Geant4 simulation and to determine the effect of the Bi2O3 content on the attenuation capability of the glasses. The mass attenuation coefficient (MAC) of BBS-glasses was estimated by the Monte Carlo simulations in Geant4, and the simulated results were validated by XCOM software. The maximum relative difference between the two approaches throughout the considered gamma-ray energies was 1.05, 1.20, 1.40, 1.52, 1.21, and 1.5%, respectively, for BBS-0–BBS-5, which means that MAC estimated through the Geant4 simulation and XCOM are in good agreement; hence, the simulation results are accurate. At each investigated energy, the linear attenuation coefficient value increases with Bi2O3 as a result of the higher molecular weight of Bi2O3, hence higher electron–photon interactions. The effective atomic number varies from 7.65–9.37, 19.64–66.66, 29.01–73.92, 36.54–76.76, 42.72–78.29, and 47.89–79.23 for BBS-0–BBS-5, respectively. The half value layer for the selected glasses followed the trend: (HVL)BBS-5 < (HVL)BBS-4 < (HVL)BBS-3 < (HVL)BBS-2 < (HVL)BBS-1 < (HVL)BBS-0. The transmission factor reduces as the thickness of the glasses increases, and the Bi2O3 content in the glasses greatly improved their photon shielding and protection ability. The comparison between the mean free path of the selected glasses with other materials revealed that BBS-5 is a better photon shield than BC and RS-360 commercial glass shields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author].

References

  1. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 144, 356–360 (2018)

    Article  ADS  Google Scholar 

  2. S. Yasmin, B.S. Barua, M.U. Khandaker, M.A. Rashid, D.A. Bradley, M.A. Olatunji, M. Kamal, Studies of ionizing radiation shielding effectiveness of silica-based commercial glasses used in Bangladeshi dwellings. Res. Phys. 9, 541–549 (2018)

    Google Scholar 

  3. S. Yasmin, Z.S. Rozaila, M.U. Khandaker, B.S. Barua, F.U.Z. Chowdhury, M.A. Rashid, D.A. Bradley, The radiation shielding offered by the commercial glass installed in Bangladeshi dwellings. Radiat. Effect Defects Solids 173(7–8), 657–672 (2018)

    Article  ADS  Google Scholar 

  4. H. Aljawhara, M. Almuqrin, I. Sayyed, Radiation shielding characterizations and investigation of TeO2–WO3–Bi2O3 and TeO2–WO3–PbO glasses. Appl. Phys. A 127, 190 (2021)

    Article  ADS  Google Scholar 

  5. M. Elsafi, M.A. El-Nahal, M.I. Sayyed, I.H. Saleh, M.I. Abbas, Effect of bulk and nanoparticle Bi2O3 on attenuation capability of radiation shielding glass. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.03.302 (in press)

    Article  Google Scholar 

  6. B. Aygün, High alloyed new stainless steel shielding material for gamma and fast neutron radiation. Nucl. Eng. Technol. 52, 647–653 (2020)

    Article  Google Scholar 

  7. O. Agar, M.I. Sayyed, H.O. Tekin, K.M. Kaky, S.O. Baki, I. Kityk, An investigation on shielding properties of BaO, MoO3 and P2O5 based glasses using MCNPX code. Res. Phys. 12, 629–634 (2019)

    Google Scholar 

  8. S. Kaewjaeng, S. Kothan, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding material application. Radiat. Phys. Chem. 160, 41–47 (2019)

    Article  ADS  Google Scholar 

  9. N. Chanthima, J. Kaewkhao, P. Limkitjaroenporn, S. Tuscharoen, S. Kothan, M. Tungjai, S. Kaewjaeng, S. Sarachai, P. Limsuwan, Development of BaO–ZnO–B2O3 glasses as a radiation shielding material. Radiat. Phys. Chem. 137, 72–77 (2017)

    Article  ADS  Google Scholar 

  10. M.I. Sayyed, A.H. Almuqrin, R. Kurtulus, A.M. Javier-Hila, K. Kaky, T. Kavas, X-ray shielding characteristics of P2O5–Nb2O5 glass doped with Bi2O3 by using EPICS2017 and Phy-X/PSD. Appl. Phys. A 127, 243 (2021)

    Article  ADS  Google Scholar 

  11. M.I. Sayyed, Y. Al-Hadeethi, M.M. AlShammari, M. Ahmed, S.H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly borotellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3. Ceram. Int. 47, 611–618 (2021)

    Article  Google Scholar 

  12. Y.B. Saddek, E.R. Shaaban, E.S. Moustafa, H.M. Moustafa, Spectroscopic properties, electronic polar252 izability, and optical basicity of Bi2O3–Li2O–B2O3 glasses. Physica B: Condens. Matter, 2399–2407 (2008)

  13. I. Ardelean, S. Cora, R.C. Lucacel, O. Hulpus, EPR and FT-IR spectroscopic studies of B2O3-Bi2O3-MnO glasses. Solid State Sci. 7, 1438 (2005)

    Article  ADS  Google Scholar 

  14. P. Pascuta, G. Borodi, E. Culea, Influence of europium ions on structure and crystallization properties of bismuth borate glasses and glass ceramics. J. Non-Cryst. Solids 354, 5475 (2008)

    Article  ADS  Google Scholar 

  15. M. Mariyappan, K. Marimuthu, M.I. Sayyed, M.G. Dong, U. Kara, Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodiumfluoroborate glasses. J. Non-Cryst. Solids 499, 75–85 (2018)

    Article  ADS  Google Scholar 

  16. M.I. Sayyed, Y.S. Rammah, A.S. Abouhaswa, H.O. Tekin, B.O. Elbashir, ZnO-B2O3-PbO glasses: synthesis and radiation shielding characterization. Phys. B Condens. Matter 548, 20–26 (2018)

    Article  ADS  Google Scholar 

  17. N.S. Saetova, A.A. Raskovalov, B.D. Antonov, T.A. Denisova, N.A. Zhuravlev, Structural features of Li2O–V2O5–B2O3 glasses: experiment and molecular dynamics simulation. J. Non-Cryst. Solids 545, 120253 (2020)

    Article  Google Scholar 

  18. M.I. Sayyed, K.A. Mahmoud, E. Lacomme, M.M. AlShammari, N. Dwaikat, Y.S.M. Alajerami, M. Alqahtani, B.O. El-bashir, M.H.A. Mhareb, Development of a novel MoO3-doped borate glass network for gamma-ray shielding applications. Eur. Phys. J. Plus 136, 108 (2021). https://doi.org/10.1140/epjp/s13360-020-01011-5

    Article  Google Scholar 

  19. A. Aşkın, Evaluation of the radiation shielding capabilities of the Na2B4O7–SiO2–MoO3-Dy2O3 glass quaternary using Geant4 simulation code and Phy-X/PSD database. Ceram. Int. 46, 9096–9102 (2020)

    Article  Google Scholar 

  20. M.I. Sayyed, K.A. Mahmoud, O.L. Tashlykov, M.U. Khandaker, M.R.I. Faruque, Enhancement of the shielding capability of soda-lime glasses with Sb2O3 dopant: a potential material for radiation safety in nuclear installations. Appl. Sci. 2021(11), 326 (2021). https://doi.org/10.3390/app11010326

    Article  Google Scholar 

  21. K. Kaur, K.J. Singh, V. Anand, Structural properties of Bi2O3–B2O3–SiO2–Na2O glasses for gamma ray shielding applications. Radiat. Phys. Chem. 120, 63–72 (2016)

    Article  ADS  Google Scholar 

  22. J.F. Briesmeister, MCNP^< TM>-A General Monte Carlo N-Particle Transport Code, Version 4C, LA-13709-M. (2000).

  23. M.S. Badawi et al., Characterization of the efficiency of a cubic NaI detector with rectangular cavity for axially positioned sources. J. Instrum. 15, P02013 (2020)

    Article  Google Scholar 

  24. S. Hurtado et al., GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration. Nucl Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 518, 764–774 (2004)

    Article  ADS  Google Scholar 

  25. M.I. Abbas et al., Efficiency of a cubic NaI (Tl) detector with rectangular cavity using standard radioactive point sources placed at non-axial position. Appl. Radiat. Isotopes 163, 109139 (2020)

    Article  Google Scholar 

  26. R. Brun, F. Rademakers, ROOT—an object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. Sect A Accel. Spectrometers Detect. Assoc. Equip. 389, 81–86 (1997)

    Article  ADS  Google Scholar 

  27. M. Elsafi, J.S. Alzahrani, M.I. Abbas, M.M. Gouda, A.A. Thabet, M.S. Badawi, A.M. El-Khatib, Geant4 tracks of nai cubic detector peak efficiency. Including Coincidence Summing Correct. Rectangular Sources (2021). https://doi.org/10.1080/00295639.2021.1895406

    Article  Google Scholar 

  28. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: photon cross sections database, NIST standard reference database (XGAM) (2010). http://www.nist.gov/pml/data/xcom/index.cfm. Accessed Oct 25, 2013.

  29. M.A. Kiani, S.J. Ahmadi, M. Outokesh, R. Adeli, H. Kiani, Study on physico-mechanical and gamma-ray shielding characteristics of new ternary nanocomposites. Appl. Radiat. Isot. 143, 141–148 (2019)

    Article  Google Scholar 

  30. Y.S. Rammah, A.A. Ali, R. El-Mallawany, F.I. El-Agawany, Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth. Phys. B Condens. Matter. 583, 412055 (2020)

    Article  Google Scholar 

  31. M.R. Kaçal, F. Akman, M.I. Sayyed, Evaluation of gamma-ray and neutron attenuation properties of some polymers. Nucl. Eng. Technol. 51, 818–824 (2019)

    Article  Google Scholar 

  32. I.O. Olarinoye (2020). “Ambient dose buildup factor.” Computational methods in nuclear radiation shielding and dosimetry. in Edited by K.S. Mann, and V.P. Singh, Nova Science Publishers, New York, 87–112.

  33. M.S. Al-Buriahi, F.I. El-Agawany, C. Sriwunkum, H. Akyıldırım, B.T. Halil Arslan, T. Tonguc, R. El-Mallawany, Y.S. Rammah, Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Phys. B Condens. Matter 581, 411946 (2020)

    Article  Google Scholar 

  34. K. Mariselvam, Physical, optical and radiation shielding features of Yb3+ ions doped H3BO3–Bi2O3–BaCO3–CaF2–ZnO glasses. Optik 230, 166319 (2021)

    Article  ADS  Google Scholar 

  35. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, A. Gamal, Y. El Sayed, Elastic moduli, photon, neutron, and proton shielding parameters of telluritebismo-vanadate (TeO2–V2O5–Bi2O3) semiconductor glasses. Ceram. Int. 46, 25440–25452 (2020). https://doi.org/10.1016/j.ceramint.2020.07.014

    Article  Google Scholar 

  36. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloy. Compd. 688, 111–117 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Elsafi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayyed, M.I., Olarinoye, O.I. & Elsafi, M. Assessment of gamma-radiation attenuation characteristics of Bi2O3–B2O3–SiO2–Na2O glasses using Geant4 simulation code. Eur. Phys. J. Plus 136, 535 (2021). https://doi.org/10.1140/epjp/s13360-021-01492-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01492-y

Navigation