Skip to main content
Log in

Multiplicity characteristics of target fragments and shower particles with noninteracting projectile nucleons emitted in 84Kr–Em interaction at 1 A GeV

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, we have focused on the multiplicity distributions of the target fragments and shower particles for the events released from the interactivity of the 84Kr36–Em at 1 A GeV. We have also focused on the variation among the target fragments and shower particles with emerged projectile fragments. In the present analysis to distinguish the type of collision, we have used different parameter which is total charge Q of the outgoing projectile fragments (i.e. the projectile fragments emitted in forward cone θc ≤ 30) or total charge of noninteracting projectile nucleons, in place of impact parameter. This new parameter is playing an important role in classifying the different types of collisions, especially in peripheral collisions. The results of the current analysis are also verified with recent experimental observations and found to be consistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W.H. Barkas, Nuclear Research Emulsion (Academia Press, London, 1963).

    Google Scholar 

  2. M.M. Sherif, M. Mohery, Egypt. J. Phys. 22, 125 (1991)

    Google Scholar 

  3. A. El-Naghy et al., Nuovo Cimento A 110, 125 (1997)

    ADS  Google Scholar 

  4. F.H. Liu, Chin. J. Phys. 38, 1063 (2000)

    Google Scholar 

  5. M. Mohery, N.N. Abd-Allah, Int. J. Mod. Phys. E 11, 161 (2002)

    Article  ADS  Google Scholar 

  6. N.N. Abd-Allah, M. Mohery, Czech. J. Phys. 51, 1189 (2001)

    Article  ADS  Google Scholar 

  7. F. Wang, Prog. Part. Nucl. Phys. 74, 35 (2014)

    Article  ADS  Google Scholar 

  8. D.H. Zhang et al., Chin. Phys. C 39, 014001 (2015)

    Article  ADS  Google Scholar 

  9. L.K. Marie et al., Arab J. Nucl. Sci. Appl. 50, 113 (2017)

    Google Scholar 

  10. N. Marimuthu et al., Adv. High Energy Phys. 2017, 7907858 (2017)

    Article  Google Scholar 

  11. K. Dusling et al., Phys. Rev. Lett. 120, 042002 (2018)

    Article  ADS  Google Scholar 

  12. M. Mekhimar et al., J. Phys. Conf. Ser. 1390, 012008 (2019)

    Article  Google Scholar 

  13. M.K. Singh et al., Int. J. Mod. Phys. E 28(8), 1950063 (2019)

    Article  ADS  Google Scholar 

  14. M.K. Singh et al., J. Korean Phys. Soc. 76(4), 297 (2020)

    Article  ADS  Google Scholar 

  15. M.K. Singh et al., Eur. Phys. J. Plus 135, 740 (2020)

    Article  Google Scholar 

  16. F.H. Liu, Chin. J. Phys. 41(5), 486 (2003)

    ADS  Google Scholar 

  17. M.K. Singh et al., Indian J. Phys. 85(10), 1523 (2011)

    Article  ADS  Google Scholar 

  18. M.K. Singh et al., J. Sci. Res. 63, 249 (2019)

    Google Scholar 

  19. M.K. Singh et al., Indian J. Phys. 84, 1257 (2010)

    Article  ADS  Google Scholar 

  20. M.K. Singh, Ph.D. thesis, VBS Purvanchal University, India, 2014

  21. S. Kumar et al., Int. J. Mod. Phys. E 29(9), 2050077 (2020)

    Article  ADS  Google Scholar 

  22. N. Marimuthu et al., Int. J. Mod. Phys. E 28(8), 1950058 (2019)

    Article  ADS  Google Scholar 

  23. JINR High Energy Physics Lab, Emulsion Group, Private Communications, Preprint p-89-213, JINR, Dubna (1989)

  24. M. Mohery et al., Int. J. Mod. Phys. E 29, 2050063 (2020)

    Article  ADS  Google Scholar 

  25. S.A. Krasnov et al., Czech. J. Phys. 46, 531 (1996)

    Article  ADS  Google Scholar 

  26. M.S. El-Nagdy et al., Mod. Phys. Lett. A 20, 1513 (2005)

    Article  ADS  Google Scholar 

  27. M.M. Sherif et al., Int. J. Mod. Phys. E 2, 835 (1993)

    Article  ADS  Google Scholar 

  28. C.Y. Bai, D.H. Zhang, Chin. Phys. C 35, 349 (2011)

    Article  ADS  Google Scholar 

  29. S.A. Azimov et al., Nucl. Phys. A 470, 653 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author is thankful to all the technical staff of GSI Darmstadt, Germany, for exposing NED using 84Kr36 projectile at 1 A GeV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.K., Karmakar, S. & Singh, V. Multiplicity characteristics of target fragments and shower particles with noninteracting projectile nucleons emitted in 84Kr–Em interaction at 1 A GeV. Eur. Phys. J. Plus 136, 419 (2021). https://doi.org/10.1140/epjp/s13360-021-01429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01429-5

Navigation