Skip to main content
Log in

Metric-based resolvability of polycyclic aromatic hydrocarbons

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Benzene or benzenoid series of structures are among the most attractive chemical structures. Polycyclic aromatic hydrocarbons (PAH) are one of the complex families of benzenoids. PAH are everyday combustion products and implemented in many usages, especially in astrochemistry, as a candidate of interstellar species. In chemical graph theory, each chemical structure can be represented as a graph, where atoms alternated to vertices and edges become bonds. Resolvability parameters of a graph are the recent advanced topic in which the entire structure is shaped such a way to get each atom’s unique position. This article studies some resolvability parameters of polycyclic aromatic hydrocarbons, such as metric dimension, edge metric dimension, and generalizations. Getting the entire structure into a novel shape obtained through resolvability parameters helps in understanding and working with the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Ahsan, Z. Zahid, S. Zafar, A. Rafiq, M Sarwar Sindhu, M. Umar, Computing the edge metric dimension of convex polytopes related graphs. J. Math. Comput. Sci. 22(2), 174–188 (2020)

    Article  Google Scholar 

  2. E.T. Baskoro, D.O. Haryeni, All graphs of order \(n\ge 11\) and diameter \(2\) with partition dimension \(n-3\). Heliyon 6, e03694 (2020)

    Article  Google Scholar 

  3. Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak, L.S. Ram, Network discovery and verification. IEEE J. Select. Areas commun. 24(12), 2168–2181 (2006)

    Article  Google Scholar 

  4. J. Caceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, D.R. Wood, On the metric dimension of Cartesian product of graphs. SIAM J. Discret. Math. 2, 423–441 (2007)

    Article  MathSciNet  Google Scholar 

  5. G. Chartrand, E. Salehi, P. Zhang, The partition dimension of graph. Aequat. Math. 59, 45–54 (2000)

    Article  MathSciNet  Google Scholar 

  6. G. Chartrand, L. Eroh, M.A.O. Johnson, R. Ortrud, Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. 105, 99–113 (2000)

    Article  MathSciNet  Google Scholar 

  7. M.A. Chaudhry, I. Javaid, M. Salman, Fault-Tolerant metric and partition dimension of graphs. Utlil. Math. 83, 187–199 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Y.M. Chu, M.F. Nadeem, M. Azeem, M.K. Siddiqui, On sharp bounds on partition dimension of convex polytopes. IEEE access 8, 224781–224790 (2020). https://doi.org/10.1109/ACCESS.2020.3044498

    Article  Google Scholar 

  9. V. Chvatal, Mastermind. Combinatorica 3(3–4), 325–329 (1983)

    Article  MathSciNet  Google Scholar 

  10. F. Dtz, J. D. Brand, S. Ito, L. Ghergel, K.M. llen, Journal of the American chemical society 122, 7707-7717 (2000)

  11. M.R. Farahani, Computing eccentricity connectivity polynomial of circumcoronene series of benzenoid \(H_k\) by ring-cut method. Anal. Univ. Vest Timis. Ser. Mat. Inf. 2, 29–37 (2013). https://doi.org/10.2478/awutm-2013-0013

    Article  MATH  Google Scholar 

  12. M.R. Farahani, Some connectivity indices of polycyclic aromatic hydrocarbons (\(PAH_s\)). Adv. Mater. Corros. 1, 65–69 (2013)

    Google Scholar 

  13. M.R. Farahani, Zagreb indices and Zagreb polynomials of polycyclic aromatic hydrocarbons \(PAH_s\). Analyt. Chim. Acta 2, 70–72 (2013)

    Google Scholar 

  14. F. Harary, R.A. Melter, On the metric dimension of a graph. Ars Combinatoria 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  15. M. Hauptmann, R. Schmied, C. Viehmann, Approximation complexity of metric dimension problem. J. Discret. Algorithm. 14, 214–222 (2012)

    Article  MathSciNet  Google Scholar 

  16. Z. Hussain, M. Munir, M. Choudhary, S.M. Kang, Computing metric dimension and metric basis of \(2D\) lattice of alpha-boron nanotubes. Symmetry 10, 300 (2018)

    Article  Google Scholar 

  17. S. Imran, M.K. Siddiqui, M. Hussain, Computing The upper bounds for The metric dimension Of cellulose network. Appl. Math. e-notes 19, 585–605 (2019)

    MathSciNet  MATH  Google Scholar 

  18. I. Javaid, M. Salman, M.A. Chaudhry, S. Shokat, Fault-tolerance in resolvability. Utlil. Math. 80, 263–275 (2009)

    MathSciNet  MATH  Google Scholar 

  19. M.A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. stat. 3, 203–236 (1993)

    Article  Google Scholar 

  20. M.A. Johnson, Browsable Structure-Activity Datasets, Advances in Molecular Similarity (JAI Press Connecticut, 1998), pp. 153–170

  21. M.K. Jamil, M.R. Farahani, M. Imran, M.A. Malik, Computing eccentric version of second Zagreb index of polycyclic aromatic hydrocarbons (PAHk). Appl Math. Nonlinear Sci. 1(1), 247–252 (2016)

    Article  MathSciNet  Google Scholar 

  22. A. Kelenc, N. Tratnik, I.G. Yero, Uniquely identifying the edges of a graph: The edge metric dimension. Discret. Appl. Math. 251, 204–220 (2018)

    Article  MathSciNet  Google Scholar 

  23. S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs. Discret. Appl. Math. 70(3), 217–229 (1996)

    Article  MathSciNet  Google Scholar 

  24. A.N.A. Koam, A. Ahmad, Barycentric subdivision of Cayley graphs with constant edge metric dimension. IEEE Access 8, 80624–80628 (2020)

    Article  Google Scholar 

  25. H.R. Lewis, M.R. Garey, D.S. Johnson, Computers and intractability. A guide to the theory of NP-completeness. W.H. Freeman and Company, San Franciscoc1979, x+338 pp. J. Symbol. Log. 48(2), 498–500 (1983)

    Article  Google Scholar 

  26. X. Liu, M. Ahsan, Z. Zahid, S. Ren, Fault-tolerant edge metric dimension of certain families of graphs. AIMS Math. 6(2), 1140–1152 (2021). https://doi.org/10.3934/math.2021069

    Article  MathSciNet  Google Scholar 

  27. J.B. Liu, M.F. Nadeem, M. Azeem, Bounds on the partition dimension of convex polytopes. Combin. Chem. Throughput Screen. (2020). https://doi.org/10.2174/1386207323666201204144422

    Article  Google Scholar 

  28. P. Manuel, R. Bharati, I. Rajasingh, C. Monica M, On minimum metric dimension of honeycomb networks. J Discret. Algorithm. 6(1), 20–27 (2008)

    Article  MathSciNet  Google Scholar 

  29. N. Mehreen, R. Farooq, S. Akhter, On partition dimension of fullerene graphs. AIMS Math. 3(3), 343–352 (2018)

    Article  Google Scholar 

  30. R.A. Melter, I. Tomescu, Metric bases in digital geometry. Comput. Vis. Graph. Image Process. 25, 113–121 (1984)

    Article  Google Scholar 

  31. M.F. Nadeem, M. Azeem, A. Khalil, The locating number of hexagonal Möbius ladder network. J. Appl. Math. Comput. (2020). https://doi.org/10.1007/s12190-020-01430-8

    Article  Google Scholar 

  32. M. Perc, J. Gómez-Gardeñes, A. Szolnoki, L.M. Floría, Y. Moreno, Evolutionary dynamics of group interactions on structured populations: a review. J. Royal Soc. Interface 10(80), 20120997 (2013)

    Article  Google Scholar 

  33. M. Perc, A. Szolnoki, Coevolutionary games–A mini review. Biosystems 99(2), 109–125 (2010)

    Article  Google Scholar 

  34. Z. Raza, M.S. Bataineh, The comparative analysis of metric and edge metric dimension of some subdivisions of the wheel graph. Asian-Eur J. Math. (2020)

  35. H. Raza, S. Hayat, X.F. Pan, On the fault-tolerant metric dimension of certain interconnection networks. J. Appl. Math. Comput. 60, 517–535 (2019)

    Article  MathSciNet  Google Scholar 

  36. H. Raza, S. Hayat, M. Imran, X.F. Pan, Fault-tolerant resolvability and extremal structures of graphs. Mathematics 7, 78–97 (2019)

    Article  Google Scholar 

  37. H. Raza, S. Hayat, X.F. Pan, On the fault-tolerant metric dimension of convex polytopes. Appl. Math. Comput. 339, 172–185 (2018)

    MathSciNet  MATH  Google Scholar 

  38. M. Somasundari, F.S. Raj, Fault-tolerant resolvability of oxide interconnections. Int. J. Innovat. Technol. Explor. Eng. 8, 2278–3075 (2019)

    Google Scholar 

  39. A. Sebö, E. Tannier, On metric generators of graphs. Math. Oper. Res. 29, 383–393 (2004)

    Article  MathSciNet  Google Scholar 

  40. M.K. Siddiqui, M. Imran, Computing the metric and partition dimension of H-Naphtalenic and VC5C7 nanotubes. J. Optoelectron. Adv. Mater. 17, 790–794 (2015)

    Google Scholar 

  41. F. Simonraj, A. George, On the metric Dimension of silicate stars. ARPN J. Eng. Appl. Sci. 5, 2187–2192 (2015)

    Google Scholar 

  42. P.J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing. Congr. Numer. 14, 549–559 (1975)

    Google Scholar 

  43. S. Söderberg, H.S. Shapiro, A combinatory detection problem. Am. Math. Month. 70(10), 1066–1070 (1963)

    Article  MathSciNet  Google Scholar 

  44. S.E. Stein, R.L. Brown, J. Am. Chem. Soc. 109, 3721–3772 (1987)

    Article  Google Scholar 

  45. M. Wagner, K. M. llen, Carbon, 36, 833-83 (1998)

  46. B. Yang, M. Rafiullah, H.M.A. Siddiqui, S. Ahmad, On Resolvability parameters of some wheel-related graphs. J. chem. (1-9), 2019 (2019)

  47. I.G. Yero, Vertices, edges, distances and metric dimension in graphs. Electron. Note. Discret. Math. 55, 191–194 (2016)

    Article  Google Scholar 

  48. K. Yoshimura, L. Przybilla, S. Ito, J.D. Brand, M. Wehmeir, H.J. Rder, K.M. llen, Macromol. Chem. Phys. 202, 215–222 (2001)

    Article  Google Scholar 

  49. Y. Zhang, S. Gao, On the edge metric dimension of convex polytopes and its related graphs. J. Combin. Opt. 39(2), 334–350 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Azeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azeem, M., Nadeem, M.F. Metric-based resolvability of polycyclic aromatic hydrocarbons. Eur. Phys. J. Plus 136, 395 (2021). https://doi.org/10.1140/epjp/s13360-021-01399-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01399-8

Navigation