Skip to main content
Log in

Teleparallel gravity coupled to matter content from nonlinear electrodynamics with dyonic configuration

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper considers a static, spherically symmetric spacetime in the context of teleparallel equivalent of General Relativity coupled to the matter content from nonlinear electrodynamics (NED) supported by gauge-invariant Lagrangians, seeking the feasibility of achieving nonsingular solutions. In this setup, the well-known NED solutions, i.e., the Bardeen and Hayward black holes (BHs) are first examined. Then, some specific dyonic configurations, involving both radial electric and magnetic fields, in the teleparallel gravity framework are analysed. For the special case of a Born-Infeld NED theory, a generalized dyonic Reissner–Nordström (RN) solution is obtained in terms of the radial coordinate which exhibits a singular behavior at the origin. Nonetheless, the appearance of a naked singularity is impossible in the adopted Born-Infeld (BI) spacetime. The location and size of horizons depend on the BI parameter, leading to the concept of a hairy BH. However, at infinity it is not distinguishable from a dyonic RNBH characterized only by global charges such as ADM mass, electric and magnetic charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S. Nojiri, S.D. Odintsov, Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. T.P. Sotiriou, V. Faraoni, \(f(R)\) theories of gravity. Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  MATH  Google Scholar 

  3. S. Capozziello, M. DeLaurentis, Extended theories of gravity. Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rep. 513, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Modified gravity theories on a nutshell: inflation bounce and late-time evolution. Phys. Rep. 692, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. A. Einstein, Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus (Wiley Online Library, 1928)

  7. R. Weitzenböck, Invarianten Theorie (Nordhoff, Groningen, 1923).

    MATH  Google Scholar 

  8. R. Aldrovandi, J.G. Pereira, Teleparallel Gravity: An Introduction, vol. 173 (Springer, Dordrecht, 2013).

    Book  MATH  Google Scholar 

  9. S. Bahamonde, Modified Teleparallel theories of gravity, PhD thesis in Applied Mathematics, University College London, 2018

  10. G.R. Bengochea, R. Ferraro, Dark torsion as the cosmic speed-up. Phys. Rev. D 79, 124019 (2009)

    Article  ADS  Google Scholar 

  11. R. Ferraro, F. Fiorini, Modified teleparallel gravity: inflation without inflaton. Phys. Rev. D 75, 084031 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. E.V. Linder, Einstein’s other gravity and the acceleration of the universe. Phys. Rev. D 81, 127301 (2010)

    Article  ADS  Google Scholar 

  13. Y.-F. Cai, S. Capozziello, M. DeLaurentis, E.N. Saridakis, \(f(T)\) teleparallel gravity and cosmology. Rep. Prog. Phys. 79, 106901 (2016)

    Article  ADS  Google Scholar 

  14. R. Ferraro, F. Fiorini, Born-infeld gravity in Weitzenböck spacetime. Phys. Rev. D 78, 124019 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Ferraro, F. Fiorini, Spherically symmetric static spacetimes in vacuum \(f(T)\) gravity. Phys. Rev. D 84, 083518 (2011)

    Article  ADS  Google Scholar 

  16. M.H. Daouda, M.E. Rodrigues, M.J.S. Houndjo, New static solutions in \(f(T)\) theory. Eur. Phys. J. C 71, 1817 (2011)

    Article  ADS  Google Scholar 

  17. J. Aftergood, A. DeBenedictis, Matter conditions for regular black holes in \(f(T)\) gravity. Phys. Rev. D 90, 124006 (2014)

    Article  ADS  Google Scholar 

  18. C.G. Boehmer, T. Harko, F.S.N. Lobo, Wormhole geometries in modified teleparralel gravity and the energy conditions. Phys. Rev. D 85, 044033 (2012)

    Article  ADS  Google Scholar 

  19. M. Jamil, D. Momeni, R. Myrzakulov, Wormholes in a viable \(f(T)\) gravity. Eur. Phys. J. C 73, 2267 (2013)

    Article  ADS  Google Scholar 

  20. A. Jawad, S. Rani, Lorentz distributed noncommutative wormhole solutions in extended teleparallel gravity. Eur. Phys. J. C 75, 173 (2015)

    Article  ADS  Google Scholar 

  21. M.H. Daouda, M.E. Rodrigues, M.J.S. Houndjo, Anisotropic fluid for a set of non-diagonal tetrads in \(f(T)\) gravity. Phys. Lett. B 715, 241 (2012)

    Article  ADS  Google Scholar 

  22. C.G. Boehmer, A. Mussa, N. Tamanini, Existence of relativistic stars in \(f(T)\) gravity. Class. Quantum Gravity 28, 245020 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. Capozziello, V.F. Cardone, H. Farajollahi, A. Ravanpak, Cosmography in \(f(T)\) gravity. Phys. Rev. D 84, 043527 (2011)

    Article  ADS  Google Scholar 

  24. S. Ilijic, M. Sossich, Compact stars in \(f(T)\) extended theory of gravity. Phys. Rev. D 98, 064047 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Finch, J.L. Said, Galactic rotation dynamics in \(f(T)\) gravity. Eur. Phys. J. C 78, 560 (2018)

    Article  ADS  Google Scholar 

  26. S. Bahamonde, K. Flathmann, C. Pfeifer, Photon sphere and perihelion shift in weak \(f(T)\) gravity. Phys. Rev. D 100, 084064 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. S.W. Hawking, G. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973).

    Book  MATH  Google Scholar 

  28. A.D. Sakharov, The initial stage of an expanding universe and the appearance of a nonuniform distribution of matter. Sov. Phys. JETP 22, 241 (1966)

    ADS  Google Scholar 

  29. E.B. Gliner, Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. Sov. Phys. JETP 22, 378 (1966)

    ADS  Google Scholar 

  30. J.M. Bardeen, Non-Singular General-Relativistic Gravitational Collapse, in Conference Proceedings of GR5 (USSR, Tbilisi, 1968), p. 174

    Google Scholar 

  31. E. Ayón-Beato, A. García, Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

  32. M. Born, L. Infeld, Foundations of the new field theory. Proc. R. Soc. Lond. A 144, 425 (1934)

    Article  ADS  MATH  Google Scholar 

  33. B. Hoffmann, L. Infeld, On the choice of the action function in the new field theory. Phys. Rev. 51, 765 (1937)

    Article  ADS  MATH  Google Scholar 

  34. A. Peres, Nonlinear electrodynamics in general relativity. Phys. Rev. 122, 273 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. S.A. Hayward, Formation and evaporation of nonsingular black holes. Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  36. R. Pelliger, R. Torrence, Nonlinear electrodynamics and general relativity. J. Math. Phys. 10, 1718 (1969)

    Article  ADS  Google Scholar 

  37. K.A. Bronnikov, G.N. Shikin, On the Reissner–Nordström problem with a nonlinear electromagnetic field, in Classical and Quantum Theory of Gravity, Trudy IF AN BSSR, p. 88, Minsk, 1976 (in Russian)

  38. I. Dymnikova, Vacuum nonsingular black hole. Gen. Relativ. Gravity 24, 235 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  39. J.P.S. Lemos, V.T. Zanchin, Regular black holes: electrically charged solutions, Reissner–Nordström outside a de Sitter core. Phys. Rev. D 83, 124005 (2011)

    Article  ADS  Google Scholar 

  40. L. Balart, E.C. Vagenas, Regular black holes with a nonlinear electrodynamics source. Phys. Rev. D 90, 124045 (2014)

    Article  ADS  Google Scholar 

  41. S.G. Ghosh, S.D. Maharaj, Radiating Kerr-like regular black hole. Eur. Phys. J. C 75, 7 (2015)

    Article  ADS  Google Scholar 

  42. T.D. Lorenzo, A. Giusti, S. Speziale, Non-singular rotating black hole with a time delay in the center, Gen. Relativ. Gravity 48, 31 (2016) [Erratum: Gen. Rel. Grav. 48, 111 (2016)]

  43. S.H. Mehdipour, M.H. Ahmadi, A comparison of remnants in noncommutative Bardeen black holes. Astrophys. Space Sci. 361, 314 (2016)

    Article  ADS  Google Scholar 

  44. Z.-Y. Fan, Critical phenomena of regular black holes in anti-de Sitter space-time. Eur. Phys. J. C 77, 266 (2017)

    Article  ADS  Google Scholar 

  45. B. Toshmatov, Z. Stuchlík, B. Ahmedov, Generic rotating regular black holes in general relativity coupled to nonlinear electrodynamics. Phys. Rev. D 95, 084037 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  46. M.E. Rodrigues, M.V.S. Silva, Bardeen regular black hole with an electric source. JCAP 06, 025 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  47. R.V. Maluf, J.C.S. Neves, Bardeen regular black hole as a quantum-corrected Schwarzschild black hole. Int. J. Mod. Phys. D 28, 1950048 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  48. M. Sharif, Q.A.-T. Mughani, Greybody factor for a rotating Bardeen black hole. Eur. Phys. J. Plus 134, 616 (2019)

    Article  Google Scholar 

  49. K. Nomura, D. Yoshida, J. Soda, Stability of magnetic black holes in general nonlinear electrodynamics. Phys. Rev. D 101, 124026 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  50. R. Kumar, A. Kumar, S.G. Ghosh, Testing rotating regular metrics as candidates for astrophysical black holes. ApJ 896, 89 (2020)

    Article  ADS  Google Scholar 

  51. E.L.B. Junior, M.E. Rodrigues, M.J.S. Houndjo, Regular black holes in \(f(T)\) gravity through a nonlinear electrodynamics source. JCAP 1510, 060 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  52. E.L.B. Junior, M.E. Rodrigues, M.J.S. Houndjo, Born-infeld and charged black holes with non-linear source in \(f(T)\) gravity. JCAP 06, 037 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  53. S. Ansoldi, Spherical black holes with regular center: A Review of existing models including a recent realization with Gaussian sources, in Conference on Black Holes and Naked Singularities Milan, Italy, May 10–12 (2007). arXiv:0802.0330

  54. N. Tamanini, C.G. Boehmer, Good and bad tetrads in \(f(T)\) gravity. Phys. Rev. D 86, 044009 (2012)

    Article  ADS  Google Scholar 

  55. E. Ayón-Beato, A. García, The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 493, 149 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Z.-Y. Fan, X. Wang, Construction of regular black holes in general relativity. Phys. Rev. D 94, 124027 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  57. S.H. Mehdipour, M.H. Ahmadi, Black hole remnants in Hayward solutions and noncommutative effects. Nucl. Phys. B 926, 49 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. S.H. Mehdipour, Emergent GUP from modified Hawking radiation in Einstein–NED theory. Can. J. Phys. 98, 801 (2020)

    Article  ADS  Google Scholar 

  59. V.P. Frolov, Notes on non-singular models of black holes. Phys. Rev. D 94, 104056 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  60. K.A. Bronnikov, Regular magnetic black holes and monopoles from nonlinear electrodynamics. Phys. Rev. D 63, 044005 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  61. K.A. Bronnikov, Dyonic configurations in nonlinear electrodynamics coupled to general relativity. Gravit. Cosmol. 23, 343 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. N. Bretón, Born-infeld black hole in the isolated horizon framework. Phys. Rev. D 67, 124004 (2003)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hamid Mehdipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdipour, S.H. Teleparallel gravity coupled to matter content from nonlinear electrodynamics with dyonic configuration. Eur. Phys. J. Plus 136, 351 (2021). https://doi.org/10.1140/epjp/s13360-021-01345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01345-8

Navigation