Skip to main content
Log in

Repulsive Casimir–Lifshitz pressure in closed cavities

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider the interaction pressure acting on the surface of a dielectric sphere enclosed within a magnetodielectric cavity. We determine the sign of this quantity regardless of the geometry of the cavity for systems at thermal equilibrium, extending the Dzyaloshinskii–Lifshitz–Pitaevskii result for homogeneous slabs. As in previous theorems regarding Casimir–Lifshitz forces, the result is based on the scattering formalism. In this case, the proof follows from the variable phase approach of electromagnetic scattering. With this, we present configurations in which both the interaction and the self-energy contribution to the pressure tend to expand the sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect (Oxford University Press, Oxford, 2009)

    Book  MATH  Google Scholar 

  2. K.A. Milton, The Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific, Singapore, 2001)

    Book  MATH  Google Scholar 

  3. O. Kenneth, I. Klich, Phys. Rev. Lett. 97, 160401 (2006)

    Article  ADS  Google Scholar 

  4. C.P. Bachas, J. Phys. A 40, 9089 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. E. Buks, M.L. Roukes, Phys. Rev. B 63, 033402 (2001)

    Article  ADS  Google Scholar 

  6. J.N. Munday, F. Capasso, Int. J. Mod. Phys. A 25, 2252 (2010)

    Article  ADS  Google Scholar 

  7. T.H. Boyer, Phys. Rev. A 9, 2078 (1974)

    Article  ADS  Google Scholar 

  8. F.S.S. Rosa, D.A.R. Dalvit, P.W. Milonni, Phys. Rev. Lett. 100, 183602 (2008)

    Article  ADS  Google Scholar 

  9. R. Zhao, J. Zhou, Th. Koschny, E.N. Economou, C.M. Soukoulis, Phys. Rev. Lett. 103, 103602 (2009)

    Article  ADS  Google Scholar 

  10. A.G. Grushin, A. Cortijo, Phys. Rev. Lett. 106, 020403 (2011)

    Article  ADS  Google Scholar 

  11. P. Rodriguez-Lopez, A.G. Grushin, Phys. Rev. Lett. 112, 056804 (2014)

    Article  ADS  Google Scholar 

  12. M. Levin, A.P. McCauley, A.W. Rodriguez, M.T.H. Reid, S.G. Johnson, Phys. Rev. Lett. 105, 090403 (2010)

    Article  ADS  Google Scholar 

  13. P.P. Abrantes, Y. França, F.S.S. da Rosa, C. Farina, R. de Melo, Phys. Rev. A 98, 012511 (2018)

    Article  ADS  Google Scholar 

  14. I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Adv. Phys. 10, 165 (1961)

    Article  ADS  Google Scholar 

  15. J.N. Munday, F. Capasso, V.A. Parsegian, Nature 457, 170 (2009)

    Article  ADS  Google Scholar 

  16. P.S. Venkataram, S. Molesky, P. Chao, A.W. Rodriguez, Phys. Rev. A 101, 052115 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Capasso, J.N. Munday, D. Iannuzzi, H.B. Chan, IEEE J. Quantum Electron. 13, 400 (2007)

    Article  Google Scholar 

  18. S.J. Rahi, M. Kardar, T. Emig, Phys. Rev. Lett. 105, 070404 (2010)

    Article  ADS  Google Scholar 

  19. Q.D. Jiang, F. Wilczek, Phys. Rev. B 99, 125403 (2019)

    Article  ADS  Google Scholar 

  20. V.N. Marachevsky, Phys. Scr. 64, 205 (2001)

    Article  ADS  Google Scholar 

  21. J.S. Høye, I. Brevik, J.B. Aarseth, Phys. Rev. E 63, 051101 (2001)

    Article  ADS  Google Scholar 

  22. I. Brevik, J.B. Aarseth, J.S. Høye, Phys. Rev. E 66, 026119 (2002)

    Article  ADS  Google Scholar 

  23. I. Brevik, E.K. Dahl, G.O. Myhr, J. Phys. A Math. Gen. 38, L49 (2005)

    Article  ADS  Google Scholar 

  24. D.A.R. Dalvit, F.C. Lombardo, F.D. Mazzitelli, R. Onofrio, Phys. Rev. A 74, 020101(R) (2006)

    Article  ADS  Google Scholar 

  25. V.N. Marachevsky, Phys. Rev. D 75, 085019 (2007)

    Article  ADS  Google Scholar 

  26. S. Zaheer, S.J. Rahi, T. Emig, R.L. Jaffe, Phys. Rev. A 82, 052507 (2010)

    Article  ADS  Google Scholar 

  27. L.P. Teo, Phys. Rev. D 82, 085009 (2010)

    Article  ADS  Google Scholar 

  28. S.J. Rahi, S. Zaheer, Phys. Rev. Lett. 104, 070405 (2010)

    Article  ADS  Google Scholar 

  29. P. Parashar, K.A. Milton, K.V. Shajesh, I. Brevik, Phys. Rev. D 96, 085010 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. O. Kenneth, I. Klich, Phys. Rev. B 78, 014103 (2008)

    Article  ADS  Google Scholar 

  31. S.J. Rahi, T. Emig, N. Graham, R.L. Jaffe, M. Kardar, Phys. Rev. D 80, 085021 (2009)

    Article  ADS  Google Scholar 

  32. R.G. Newton, Scattering Theory of Waves and Particles (Dover, Mineola, New York, 2002)

    MATH  Google Scholar 

  33. G.W. Hanson, A.B. Yakovlev, Operator Theory for Electromagnetics (Springer, New York, 2002)

    Book  MATH  Google Scholar 

  34. B. Sun, L. Bi, P. Yang, M. Kahnert, G. Kattawar, Invariant Imbedding T-Matrix Method for Light Scattering by Nonspherical and Inhomogeneous Particles (Elsevier, Amsterdam, 2019)

    Google Scholar 

  35. L.P. Teo, Int. J. Mod. Phys. A 27, 1230021 (2012)

    Article  ADS  Google Scholar 

  36. B. Simon, Adv. Math. 24, 244 (1977)

    Article  Google Scholar 

  37. G. Barton, J. Phys. A Math. Gen. 37, 3725 (2004)

    Article  ADS  Google Scholar 

  38. Y. Li, K.A. Milton, X. Guo, G. Kennedy, S.A. Fulling

  39. B.R. Johnson, Appl. Opt. 27, 4861 (1988)

    Article  ADS  Google Scholar 

  40. A. Forrow, N. Graham, Phys. Rev. A 86, 062715 (2012)

    Article  ADS  Google Scholar 

  41. F. Calogero, Variable Phase Approach to Potential Scattering (Academic, New York, 1967)

    MATH  Google Scholar 

  42. B.R. Johnson, J. Opt. Soc. Am. A 16, 845 (1999)

    Article  ADS  Google Scholar 

  43. B. Toni, Advances in Interdisciplinary Mathematical Research (Springer, New York, 2014). (Chapter 3)

  44. R.P. Feynman, Phys. Rev. 56, 340 (1939)

    Article  ADS  Google Scholar 

  45. J.L. Garrett, D.A.T. Somers, J.N. Munday, Phys. Rev. Lett. 120, 040401 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  46. K.A. Milton, P. Parashar, I. Brevik, G. Kennedy, Ann. Phys. 412, 168008 (2020)

    Article  Google Scholar 

  47. I. Cavero -Peláez, J.M. Muñoz-Castañeda, C. Romaniega, Phys. Rev. D 103, 045005 (2021)

  48. M. Asorey, J.M. Munoz-Castaneda, Nucl. Phys. B 874, 852 (2013)

    Article  ADS  Google Scholar 

  49. G.L. Klimchitskaya, V.M. Mostepanenko, Phys. Rev. B 75(3), 036101 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful to I. Cavero -Peláez, A. Romaniega, L. M. Nieto and J. M. Muñoz-Castañeda for the useful suggestions. This work was supported by the FPU fellowship program (FPU17/01475) and the Junta de Castilla y León and FEDER projects (BU229P18 and VA137G18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Romaniega.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romaniega, C. Repulsive Casimir–Lifshitz pressure in closed cavities. Eur. Phys. J. Plus 136, 327 (2021). https://doi.org/10.1140/epjp/s13360-021-01308-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01308-z

Navigation