Skip to main content
Log in

Stable charged radiating systems associated with tilted observers

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper is aimed to study the influence of electromagnetic field and tilted congruences on the dynamical features of self-gravitating system. We shall explore the stability of homogeneous energy density in the background of Maxwell–Palatini f(R) gravity. In this respect, we have considered an irrotational non-static planar geometry which is assumed to have two different types of gravitating sources. The role of tilted congruences and the geodesic motion of an evolving system is studied through the divergence of the entropy vector field. The condition for the emergence of Minskoskian cavity is also explored. In order to connect tilted and non-tilted reference frames with inflationary and inverse Ricci scalar corrections in the charged medium, few well-consistent relations are presented. It is concluded that effective electric charge is trying to increase the stability of regular energy density of the planar system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D. Pietrobon, A. Balbi, D. Marinucci, Phys. Rev. D 74, 043524 (2006)

    Article  ADS  Google Scholar 

  2. T. Giannantonio et al., Phys. Rev. D 74, 063520 (2006)

    Article  ADS  Google Scholar 

  3. A.G. Riess et al., Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

  4. A.H. Guth, Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  5. P.J.E. Peebles, Principles of Physical Cosmology (Princeton University Press, Princeton, 1993)

    MATH  Google Scholar 

  6. E. Komatsu et al., Astrophys. J. Supp. Ser. 180, 330 (2009)

    Article  ADS  Google Scholar 

  7. S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007)

    Article  Google Scholar 

  8. S. Nojiri, S.D. Odintsov, Phys. Lett. B 639, 144 (2006)

    Article  ADS  Google Scholar 

  9. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012)

    Article  ADS  Google Scholar 

  10. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Bamba, S. Nojiri, and S. D. Odintsov arXiv preprint arXiv:1302.4831, (2013)

  12. Z. Yousaf, K. Bamba, Z.M. Bhatti, Phys. Rev. D 93, 124048 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Z. Yousaf, K. Bamba, M.Z. Bhatti, Phys. Rev. D 93, 064059 (2016)

    Article  ADS  Google Scholar 

  14. S. Nojiri and S. D. Odintsov arXiv preprint arXiv:0807.0685, (2008)

  15. S. Nojiri, S.D. Odintsov, S. Ogushi, Int. J. Mod. Phys. A 17, 4809–4870 (2002)

    Article  ADS  Google Scholar 

  16. Z. Yousaf, Eur. Phys. J. Plus 134, 245 (2019)

    Article  Google Scholar 

  17. X.H. Meng, P. Wang, Class. Quantum Grav. 21, 951 (2004)

    Article  ADS  Google Scholar 

  18. G. Allemandi, A. Borowiec, M. Francaviglia, Phys. Rev. D 70, 043524 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Allemandi, M.L. Ruggiero, Gen. Relativ. Gravit. 39, 1381 (2007)

    Article  ADS  Google Scholar 

  20. M. Sharif, Z. Yousaf, Eur. Phys. J. C 75, 58 (2015)

    Article  ADS  Google Scholar 

  21. G.J. Olmo, Int. J. Mod. Phys. D 20, 413–462 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  22. T.P. Sotiriou, Class. Quantum Grav. 23, 5117 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. G.J. Olmo, Phys. Rev. D 72, 083505 (2011)

    Article  ADS  Google Scholar 

  24. G.J. Olmo, Int. J. Mod. Phys. D 20, 413 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  25. G.J. Olmo, D. Rubiera-Garcia, Phys. Rev. D 86, 044014 (2012)

    Article  ADS  Google Scholar 

  26. G.J. Olmo, H. Sanchis-Alepuz, S. Tripathi Phys. Rev. D, 86, 104039 (2012)

  27. S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo, Phys. Rev. D 86, 127504 (2012)

    Article  ADS  Google Scholar 

  28. G.J. Olmo, D. Rubiera-Garcia, A. Wojnar, Phys. Rep. 876, 1 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. G.J. Olmo, D. Rubiera-Garcia, Class. Quantum Grav. 37, 215002 (2020)

    Article  ADS  Google Scholar 

  30. M. Ilyas, Z. Yousaf, M.Z. Bhatti, B. Masud, Astrophys. Space Sci. 362, 237 (2017)

    Article  ADS  Google Scholar 

  31. P.H.R.S. Moraes, R.A.C. Correa, R.V. Lobato, J. Cosmol. Astropart. Phys. 2017, 029 (2017)

    Article  Google Scholar 

  32. M.Z. Bhatti, Z. Yousaf, A. Khadim, Phys. Rev. D 101, 104029 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  33. P. K. Sahoo, P. H. R. S. Moraes, and P. Sahoo arXiv preprint arXiv:1709.07774, (2017)

  34. C. Bambi, A. Cardenas-Avendano, G.J. Olmo, D. Rubiera-Garcia, Phys. Rev. D 93, 064016 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. Z. Yousaf, Phys. Dark Univ. 28, 100509 (2020)

    Article  Google Scholar 

  36. Z. Yousaf, M.Z. Bhatti, H. Asad, Phys. Dark Univ. 28, 100527 (2020)

    Article  Google Scholar 

  37. A.K. Yadav, L.K. Sharma, B.K. Singh, P.K. Sahoo, New Astr. 78, 101382 (2020)

    Article  Google Scholar 

  38. A. Malik, M.F. Shamir, New Astr. 80, 101422 (2020)

    Article  Google Scholar 

  39. Z. Yousaf, Eur. Phys. J. Plus 132, 276 (2017)

    Article  Google Scholar 

  40. S. W. Hawking, W. Israel. CUP Archive, 1979

  41. L. Herrera, A. Di Prisco, J. Hernández-Pastora, N. Santos, Phys. Lett. A 237, 113 (1998)

    Article  ADS  Google Scholar 

  42. L. Herrera, A. Di Prisco, J. Martin, J. Ospino, N.O. Santos, O. Troconis, Phys. Rev. D 69, 084026 (2004)

    Article  ADS  Google Scholar 

  43. L. Herrera, A. Di Prisco, J. Ibáñez, Phys. Rev. D 84, 107501 (2011)

    Article  ADS  Google Scholar 

  44. Z. Yousaf, M.Z. Bhatti, A. Rafaqat, Can. J. Phys. 95, 1246–1252 (2017)

    Article  ADS  Google Scholar 

  45. A. Di Prisco, L. Herrera, J. Ospino, N.O. Santos, V.M. Viña-Cervantes, Int. J. Mod. Phys. D 20, 2351 (2011)

    Article  ADS  Google Scholar 

  46. M.Z. Bhatti, Z. Yousaf, M. Ilyas, Eur. Phys. J. C 77, 690 (2017)

    Article  ADS  Google Scholar 

  47. Z. Yousaf, Astrophys. Space Sci. 363, 226 (2018)

    Article  ADS  Google Scholar 

  48. Z. Yousaf, M.Z. Bhatti, R. Saleem, Eur. Phys. J. Plus 134, 142 (2019)

    Article  Google Scholar 

  49. L. Herrera, A. Di Prisco, J. Ibáñez, Phys. Rev. D 84, 064036 (2011)

    Article  ADS  Google Scholar 

  50. L. Herrera, Entropy 19, 110 (2017)

    Article  ADS  Google Scholar 

  51. L. Herrera, Entropy 22, 340 (2020)

    Article  ADS  Google Scholar 

  52. Z. Yousaf, K. Bamba, M.Z. Bhatti, Phys. Rev. D 95, 024024 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  53. Z. Yousaf, M.Z. Bhatti, S. Yaseen, Eur. Phys. J. Plus 134, 487 (2019)

    Article  Google Scholar 

  54. Z. Yousaf, M.Z. Bhatti, M.F. Malik, Eur. Phys. J. Plus 134, 470 (2019)

    Article  Google Scholar 

  55. R.A. Sussman, L.G. Jaime, Class. Quantum Grav. 34, 245004 (2017)

    Article  ADS  Google Scholar 

  56. Z. Yousaf, Mod. Phys. Lett. A 34, 1950333 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  57. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  58. I. Sawicki, W. Hu, Phys. Rev. D 75, 127502 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  59. G.F.R. Ellis, R. Maartens, M.A.H. MacCallum, Relativistic Cosmology (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  60. L. Herrera, Int. J. Mod. Phys. D 20, 1689 (2011)

    Article  ADS  Google Scholar 

  61. L. Herrera, A.D. Prisco, J.L. Hernández-Pastora, J. Martín, J. Martínez, Class. Quantum Grav. 14, 2239 (1997)

    Article  ADS  Google Scholar 

  62. L. Herrera, Phys. Lett. A 300, 157 (2002)

    Article  ADS  Google Scholar 

  63. L. Herrera, N.O. Santos, Phys. Rev. D 70, 084004 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  64. Z. Yousaf, M.Z. Bhatti, Int. J. Geom. Meth. Mod. Phys. 15, 1850160 (2018)

    Article  Google Scholar 

  65. L. Herrera, G. Le Denmat, N.O. Santos, Phys. Rev. D 79, 087505 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by National Research Project for Universities (NRPU), Higher Education Commission Pakistan under the research Project No. 8754/Punjab/NRPU/R&D/HEC/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Yousaf.

Appendix

Appendix

The expressions \(\mathcal {K}_0\) and \(\mathcal {K}_1\) arising in Eqs. (60) and (61) are given below

$$\begin{aligned} \mathcal {K}_0&=\frac{\mathcal {T}_{01}}{C^2}\left( \frac{2B'}{B} +\frac{2f'_R}{f_R}+\frac{C'}{C}\right) -\dot{\mathcal {T}}_{00} -\mathcal {T}_{00}\left( \frac{\dot{C}}{C}+\frac{3\dot{f_R}}{2f_R} +\frac{2\dot{B}}{B}\right) -\frac{\mathcal {T}_{11}}{C^2} \nonumber \\&\quad \times \left( \frac{\dot{C}}{C}+\frac{\dot{f_R}}{2f_R}\right) +\left( \frac{\mathcal {T}_{10}}{C^2}\right) '-\frac{2\mathcal {T}_{22}}{B^2}\left( \frac{\dot{B}}{B} +\frac{\dot{f_R}}{2f_R}\right) , \end{aligned}$$
(A1)
$$\begin{aligned} \mathcal {K}_1&=-\dot{\mathcal {T}}_{10} +\mathcal {T}_{00}\frac{f_R'}{2f_R}+ \left( 2\frac{B'}{B}+\frac{3f_R'}{2f_R}\right) \frac{\mathcal {T}_{11}}{C^2}-\mathcal {T}_{10} \left( \frac{\dot{C}}{C}+\frac{2\dot{f}_R}{f_R}+\frac{2\dot{B}}{B}\right) \nonumber \\&\quad +\left( \frac{\mathcal {T}_{11}}{C^2}\right) '-\frac{2}{B^2}\left( \frac{B'}{B}+\frac{f'_R}{2f_R}\right) \mathcal {T}_{22}. \end{aligned}$$
(A2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousaf, Z. Stable charged radiating systems associated with tilted observers. Eur. Phys. J. Plus 136, 281 (2021). https://doi.org/10.1140/epjp/s13360-021-01278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01278-2

Keywords

Navigation