Skip to main content
Log in

A simple geometry to model fluid spheres in general relativity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A simple geometry which is static and spherically symmetrical is proposed, useful to model a fluid sphere in general relativity. This allows us to describe the interior of stellar objects both neutral and charged. It is shown that in both cases the solution is stable, which means that the behavior of the density and radial pressure is monotonic decreasing functions. Both models depend on two parameters, in the neutral case, these are the compactness rate \(u=GM/c^2R\) and w related to the monotonically increasing or decreasing behavior of the speed of sound, and in the charged case, they are the compactness rate and the rate between the charge Q and the radius R, \(q=Q/R\). A comparison is done between the case of a charged perfect fluid and the case of an anisotropic fluid; from there we can show that, as a result of the presence of the charge and its repulsion effect that it generates at a local and universal level, the density for the anisotropic case is greater than the density in the charged case. For both models, we obtain physical values of objects with a compactness rate \(u=0.35578\) for the particular cases of masses and radios for \((M_\odot ,R=4150.1\,\mathrm{m})\), \((1.5M_\odot ,R=6225\,\mathrm{m})\), \((2M_\odot ,R=8300 m)\). In the neutral case, the greater central density \(\rho _c=5.0840\times 10^{19} \,\mathrm{kg/m}^3\) matches the object of \(1.5M_\odot \) and for the charged case, the maximum central density is of \(\rho _c=8.8439\times 10^{18} \,\mathrm{kg/m}^3\), associated with the star with \(1M_\odot \). Additionally, by using the proposed model, we obtain the values of density and pressure for the star PSR J1614–223, the maximum value of the central density \(\rho _c=1.0573\times 10^{18} \,\mathrm{kg/m}^3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. N.K. Glendenning, In Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Springer-Verlag, Berlin, 2000)

    Book  MATH  Google Scholar 

  2. P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1: Equation of State and Structure, vol. 326 (Springer, New York, 2007)

    Google Scholar 

  3. M.S.R. Delgaty, K. Lake, Comput. Phys. Commun. 115, 395 (1998)

    Article  ADS  Google Scholar 

  4. C.C. Moustakidis, Gen Relativ Gravit 49, 68 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. G. Estevez-Delgado et al., Mod Phys Lett A 34, 1950115 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Estevez-Delgado et al., Canadian J. of Phys 97, 988 (2019)

    Article  ADS  Google Scholar 

  7. G. Estevez et al., Rev. Mex. Fis 65, 392 (2019)

    Article  Google Scholar 

  8. J. Estevez-Delgado et al., Mod. Phys. Lett. A 35, 2050141 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Estevez-Delgado et al., Mod. Phys. Lett. A 33, 1850237 (2018)

    Article  ADS  Google Scholar 

  10. G. Baym, C. Pethick, D. Pines, Nature 224, 673 (1969)

    Article  ADS  Google Scholar 

  11. M. Hoffberg et al., Phys. Rev. Lett. 24, 775 (1970)

    Article  ADS  Google Scholar 

  12. A. Sedrakian, J.W. Clark, Eur. Phys. J. A 55, 167 (2019)

    Article  ADS  Google Scholar 

  13. P.W. Anderson, R.G. Palmer, Nat. Phys. Sci. 231, 145 (1971)

    Article  ADS  Google Scholar 

  14. J.W. Clark, N.C. Chao, Nat. Phys. Sci. 236, 37 (1972)

    Article  ADS  Google Scholar 

  15. V. Canuto, S.M. Chitre, Phys. Rev. Lett. 30, 999 (1973)

    Article  ADS  Google Scholar 

  16. Daniel Schiff, Nat. Phys. Sci. 243, 130 (1973)

    Article  ADS  Google Scholar 

  17. S. Balberg, N. Barnea, Phys. Rev. C 57, 409 (1998)

    Article  ADS  Google Scholar 

  18. D. Bailin, A. Love, Phys. Rep. 107, 325 (1984)

    Article  ADS  Google Scholar 

  19. R.F. Sawyer, Phys. Rev. Lett. 29, 382 (1972)

    Article  ADS  Google Scholar 

  20. T. Takatsuka, R. Tamagaki, Prog. Theor. Phys. 94, 457 (1995)

    Article  ADS  Google Scholar 

  21. H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  22. C.G. Bohmer, T. Harko, Class. Quant. Grav. 23, 6479 (2006)

    Article  ADS  Google Scholar 

  23. M.K. Mak, P.N. Dobson Jr., T. Harko, Europhys. Lett. 55, 310 (2001)

    Article  ADS  Google Scholar 

  24. C.G. Böhmer, T. Harko, Gen Relativ Gravit 39, 757 (2007)

    Article  ADS  Google Scholar 

  25. H. Andréasson, Commun. Math. Phys. 288, 715 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Estevez-Delgado et al., Rev. Mex. Fis 65, 382 (2019)

    Article  MathSciNet  Google Scholar 

  27. S. Ray, M. Malheiro, J.P.S. Lemos, V.T. Zanchin-Braz, J. Phys. 34, 310 (2004)

    Google Scholar 

  28. G. Estevez-Delgado, J. Estevez-Delgado, In preparation (2020)

  29. S. Rosseland, Mont. Not. Royal Astronom. Soc. 84, 720 (1924)

    Article  ADS  Google Scholar 

  30. B.B. Siffert, J.R.T. de Mello Neto, M.O. Calvao, Braz. J. Phys. 37, 609 (2007)

    Article  ADS  Google Scholar 

  31. S. Gedela, R.P. Pant, R.K. Bisht, N. Pant, Eur. Phys. J. A 55, 95 (2019)

    Article  ADS  Google Scholar 

  32. P. Bhar, S.K. Maurya, Y.K. Gupta, T. Manna, Eur. Phys. J. A 52, 312 (2016)

    Article  ADS  Google Scholar 

  33. S. Gedela, R.K. Bisht, N. Pant, Eur. Phys. J. A 54, 207 (2018)

    Article  ADS  Google Scholar 

  34. P. Fuloria, Eur. Phys. J. A 54, 179 (2018)

    Article  ADS  Google Scholar 

  35. S.K. Maurya, S.D. Maharaj, Eur. Phys. J. A 54, 68 (2018)

    Article  ADS  Google Scholar 

  36. Gabino Estevez-Delgado, Joaquin Estevez-Delgado, Mod. Phys. Lett. A 33, 1850081 (2018)

    Article  ADS  Google Scholar 

  37. G. Estevez-Delgado et al., Mod. Phys. Lett. A 35, 2050144 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. J. Estevez-Delgado et al., Mod. Phys. Lett. A 35, 2050132 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. J. Estevez-Delgado et al., Mod. Phys. Lett. A 35, 2050133 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Estevez-Delgado, A. Cleary-Balderas, A. Tamez Murguía, R. Soto-Espitia, Eur. Phys. J. Plus 134, 1–14 (2019)

    Article  Google Scholar 

  41. S. Thirukkanesh, R. Sharma, S. Das, Eur. Phys. J. Plus 135, 629 (2020)

    Article  Google Scholar 

  42. G. Estevez-Delgado et al., Eur. Phys. J. Plus 135, 143 (2020)

    Article  Google Scholar 

  43. J. Estevez-Delgado et al., Eur. Phys. J. Plus 135, 204 (2020)

    Article  Google Scholar 

  44. P. Bhar, M. Govender, R. Sharma, Pramana - J Phys 90, 5 (2018)

    Article  ADS  Google Scholar 

  45. M.H. Murad, Astrophys. Space Sci. 343, 187 (2013)

    Article  ADS  Google Scholar 

  46. A. Nduka, Acta. Phys. Polon B 9, 569 (1978)

    Google Scholar 

  47. N. Pant, S. Faruqi, Gravitation and Cosmology 18, 204 (2012)

    Article  ADS  Google Scholar 

  48. C.G. Böhmer, A. Mussa, Gen. Rel. Grav. 43, 3033 (2011)

    Article  ADS  Google Scholar 

  49. J. Estevez-Delgado et al., Int. J of Mod Phys D 29, 2050022 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  50. J. Estevez-Delgado et al., Mod. Phys. Lett. A 35, 2050120 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  51. T.E. Kiess, Astrophys. Space Sci. 339, 329 (2012)

    Article  ADS  Google Scholar 

  52. K.D. Krori, J. Barua, J. Phys. A, Math. Gen. 8, 508 (1975)

    Article  ADS  Google Scholar 

  53. V. Varela, F. Rahaman, S. Ray, K. Chakraborty, M. Kalam, Phys. Rev. D 82, 044052 (2010)

    Article  ADS  Google Scholar 

  54. F. Rahaman, S. Ray, A. Kayum Jafry, K. Chakraborty, Phys. Rev. D 82, 104055 (2010)

  55. P. Bhar, F. Rahaman, A. Jawad, S. Islam, Astrophys. Space Sci. 360, 11 (2015)

    Article  Google Scholar 

  56. P. Bhar, Astrophys. Space Sci. 356, 365 (2015)

    Article  ADS  Google Scholar 

  57. P. Bhar, Astrophys. Space Sci. 356, 309 (2015)

    Article  ADS  Google Scholar 

  58. F. Rahaman, R. Sharma, S. Ray, R. Maulick, I. Karar, Eur. Phys. J. C 72, 2071 (2012)

    Article  ADS  Google Scholar 

  59. M. Kalam, F. Rahaman, C.M. Hossein, S. Ray, Eur. Phys. J. C 73, 2409 (2013)

    Article  ADS  Google Scholar 

  60. Z. Roupas, G.G.L. Nashed, Eur. Phys. J. C 80, 905 (2020)

    Article  ADS  Google Scholar 

  61. Z. Roupas, Astrophys. Space Sci 366, 9 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  62. G. Abbas, S. Qaisar, A. Jawad, Astrophys. Space Sci. 359, 17 (2015)

    Article  ADS  Google Scholar 

  63. M. Zubair, G. Abbas, I. Noureen, Astrophys. Space Sci. 361, 8 (2016)

    Article  ADS  Google Scholar 

  64. M. Zubair, G. Abbas, Astrophys. Space Sci. 361, 342 (2016)

    Article  ADS  Google Scholar 

  65. M. Sharif, A. Waseem, Can. J. Phys. 94, 1024 (2016)

    Article  ADS  Google Scholar 

  66. M. Ilyas et al., Astrophys. Space Sci. 362, 237 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  67. Z. Yousaf, M.Z. Bhatti, M. Ilyas, Eur. Phys. J. C 78, 307 (2018)

    Article  ADS  Google Scholar 

  68. I.G. Salako, A. Jawad, H. Moradpour, Int. J. Geom. Methods Mod. Phys. 15, 1850093 (2018)

    Article  MathSciNet  Google Scholar 

  69. M.F. Shamir, A. Malik, Commun. Theor. Phys. 71, 599 (2019)

    Article  ADS  Google Scholar 

  70. P. Saha, U. Debnath, Eur. Phys. J. C 79, 919 (2019)

    Article  ADS  Google Scholar 

  71. M.F. Shamir, I. Fayyaz, Int. J. Mod. Phys. A 35, 2050013 (2020)

    Article  ADS  Google Scholar 

  72. M.F. Shamir, I. Fayyaz, Mod. Phys. Lett. A 35, 1950354 (2020)

    Article  ADS  Google Scholar 

  73. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  74. R. Wald, General Relativity (The University of Chicago Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  75. L. Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  76. A. Di Prisco, L. Herrera, V. Varela, Gen. Relativ. Gravit. 29, 1239 (1997)

    Article  ADS  Google Scholar 

  77. H. Abreu, H. Hernández, L.A. Núņez, Class Quantum Gravity 24, 4631 (2007)

    Article  ADS  Google Scholar 

  78. G. Estevez-Delgado, J. Estevez-Delgado, J. Eur. Phys. J. C 78, 673 (2018)

    Article  ADS  Google Scholar 

  79. J. Estevez-Delgado, N. E. Rodríguez Maya, J. Martínez Peña, A. Cleary-Balderas and J. M. Paulin-Fuentes. (2021). An anisotropic charged fluids with Chaplygin equation of state, Submit to Modern Phys. Lett. A

  80. J. Estevez-Delgado, G. Estevez-Delgado, J. Martínez Peña, N. E. Rodríguez Maya and A. Cleary-Balderas. (2021). Chaplygin strange stars in presence of quintessence, Submit

  81. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973)

    Book  MATH  Google Scholar 

  82. R. Geroch, G. Horowitz, Global Structure of Spacetimes, in General Relativity: An Einstein Centenary Survey, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1979)

    Google Scholar 

  83. S. Hawking, R. Penrose, Proc. Royal Soc. London Ser. A, Math. Phys. Sci. 314, 529 (1970)

    ADS  Google Scholar 

  84. K. Atazadeh, F. Darabi, Gen. Relativ. Gravit. 46, 1664 (2014)

    Article  ADS  Google Scholar 

  85. P. Bhar, Astrophys. Space Sci. 357, 46 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the facilities provided by the Universidad Michoacana de San Nicolás de Hidalgo and CIC-UMSNH during the realization of this research, and we also acknowledge Dr. Tatjana Vukasinac for her discussions and Itauhki Solis Mendoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin Estevez-Delgado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estevez-Delgado, J., Estevez-Delgado, G. A simple geometry to model fluid spheres in general relativity. Eur. Phys. J. Plus 136, 217 (2021). https://doi.org/10.1140/epjp/s13360-021-01201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01201-9

Navigation