Skip to main content
Log in

Energy loss of heavy quarks in the isotropic collisional hot QCD medium at a finite chemical potential

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present article is the followup of Eur. Phys. J. C 79, 761 (2019), where we studied the energy loss of the heavy quarks traversing through the isotropic collisional hot QCD medium. As the QCD phase diagram at finite baryon density and the moderate temperature is expected to be traced by the upcoming experimental facilities such as Anti-proton and Ion Research (FAIR) and Nuclotron-based Ion Collider fAcility (NICA), the theoretical research needs the inclusion of finite chemical potential to study the hot QCD medium. Therefore, the aim here is to develop a formalism that investigates the collisional energy loss of heavy quarks moving in the hot QCD medium having small but a finite quark chemical potential. The calculation uses the extended effective fugacity quasi-particle model [1,2,3] and the effective kinetic theory with Bhatnagar-Gross-Krook (BGK) collisional kernel. The change in the energy of charm and bottom quarks with respect to their corresponding momenta has been investigated at different values of collisions frequency and chemical potential. We find that the bottom quark loses less energy than the charm quark for a fixed momentum, collisional frequency and chemical potential. The energy loss values are found to decrease with increasing chemical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Mitra, V. Chandra, Phys. Rev. D 96, 094003 (2017)

    Article  ADS  Google Scholar 

  2. V. Chandra, R. Kumar, V. Ravishankar, Phys. Rev. C 76, 054909 (2007); [Erratum: Phys. Rev. C 76, 069904 (2007)]; V. Chandra, A. Ranjan, V. Ravishankar, Eur. Phys. J. A 40, 109-117 (2009)

  3. V. Chandra, V. Ravishankar, Phys. Rev. D 84, 074013 (2011)

    Article  ADS  Google Scholar 

  4. Fukushima, Kenji, Mohanty, Bedangadas, Xu, Nu, arXiv:2009.03006 [nucl-ph]

  5. Bjorken, James D, Fermilab preprint 82/59-THY, 1982, unpublished

  6. M.H. Thoma, M. Gyulassy, Nucl. Phys. B 351, 491 (1991)

    Article  ADS  Google Scholar 

  7. E. Braaten, M.H. Thoma, Phys. Rev. D 44, 1298 (1991)

    Article  ADS  Google Scholar 

  8. E. Braaten, M.H. Thoma, Phys. Rev. D 44, R2625 (1991)

    Article  ADS  Google Scholar 

  9. S. Mrowczynski, Phys. Lett. B 269, 383 (1991)

    Article  ADS  Google Scholar 

  10. M.H. Thoma, Phys. Lett. B 273, 128 (1991)

    Article  ADS  Google Scholar 

  11. Y. Koike, T. Matsui, Phys. Rev. D 45, 3237 (1992)

    Article  ADS  Google Scholar 

  12. P. Romatschke, M. Strickland, Phys. Rev. D 69, 065005 (2004)

    Article  ADS  Google Scholar 

  13. P. Romatschke, M. Strickland, Phys. Rev. D 71, 125008 (2005)

    Article  ADS  Google Scholar 

  14. R. Baier, Y. Mehtar-Tani, Phys. Rev. C 78, 064906 (2008)

    Article  ADS  Google Scholar 

  15. M.E. Carrington, K. Deja, S. Mrowczynski, Phys. Rev. C 92, 044914 (2015)

    Article  ADS  Google Scholar 

  16. M.E. Carrington, K. Deja, S. Mrowczynski, Phys. Rev. C 95, 024906 (2017)

    Article  ADS  Google Scholar 

  17. R. Baier, D. Schiff, B.G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000)

    Article  ADS  Google Scholar 

  18. P. Jacobs, X.N. Wang, Prog. Part. Nucl. Phys. 54, 443 (2005)

    Article  ADS  Google Scholar 

  19. N. Armesto et al., Phys. Rev. C 86, 064904 (2012)

    Article  ADS  Google Scholar 

  20. A. Majumder, M. Van Leeuwen, Prog. Part. Nucl. Phys. 66, 41 (2011)

    Article  ADS  Google Scholar 

  21. M.G. Mustafa, D. Pal, D.K. Srivastava, M. Thoma, Phys. Lett. B 428, 234 (1998)

    Article  ADS  Google Scholar 

  22. Y.L. Dokshitzer, D.E. Kharzeev, Phys. Lett. B 519, 199 (2001)

    Article  ADS  Google Scholar 

  23. M. Djordjevic, M. Gyulassy, Nucl. Phys. A 733, 265 (2004)

    Article  ADS  Google Scholar 

  24. S. Wicks et al., Nucl. Phys. A 783, 493 (2007)

    Article  ADS  Google Scholar 

  25. S. Wicks et al., Nucl. Phys. A 784, 426 (2007)

    Article  ADS  Google Scholar 

  26. R. Abir et al., Phys. Rev. D 85, 054012 (2012)

    Article  ADS  Google Scholar 

  27. R. Abir et al., Phys. Lett. B 715, 183 (2012)

    Article  ADS  Google Scholar 

  28. S. Jeon, G.D. Moore, Phys. Rev. C 71, 034901 (2005)

    Article  ADS  Google Scholar 

  29. M. Gyulassy, P. Levai, I. Vitev, Nucl. Phys. B 571, 197 (2000)

    Article  ADS  Google Scholar 

  30. B.G. Zakharov, JETP Lett. 73, 49 (2001)

    Article  ADS  Google Scholar 

  31. M. Djordjevic, U.W. Heinz, Phys. Rev. Lett. 101, 022302 (2008)

    Article  ADS  Google Scholar 

  32. R. Baier, Y.L. Dokshitzer, A.H. Mueller, D. Schiff, JHEP 0109, 033 (2001)

    Article  ADS  Google Scholar 

  33. G.Y. Qin, J. Ruppert, C. Gale, S. Jeon, G.D. Moore, M.G. Mustafa, Phys. Rev. Lett. 100, 072301 (2008)

    Article  ADS  Google Scholar 

  34. S. Cao, G.Y. Qin, S.A. Bass, Phys. Rev. C 88, 044907 (2013)

    Article  ADS  Google Scholar 

  35. M.G. Mustafa, M.H. Thoma, Acta Phys. Hung. A 22, 93 (2005)

    Article  Google Scholar 

  36. M.G. Mustafa, M.H. Thoma, Phys. Rev. C 72, 014905 (2005)

    Article  ADS  Google Scholar 

  37. A..K. Dutt-Mazumder, J..e Alam, P. Roy, B. Sinha, Phys. Rev. D 71, 094016 (2005)

  38. A. Meistrenko, A. Peshier, J. Uphoff, C. Greiner, Nucl. Phys. A 901, 51 (2013)

    Article  ADS  Google Scholar 

  39. K.M. Burke et al., JET Collaboration. Phys. Rev. C 90, 014909 (2014)

    Article  ADS  Google Scholar 

  40. S. Peigne, A. Peshier, Phys. Rev. D 77, 014015 (2008)

    Article  ADS  Google Scholar 

  41. S. Peigne, A. Peshier, Phys. Rev. D 77, 114017 (2008)

    Article  ADS  Google Scholar 

  42. R.B. Neufeld, I. Vitev, H. Xing, Phys. Rev. D 89(2014), 096003 (2014)

    Article  ADS  Google Scholar 

  43. P. Chakraborty, M.G. Mustafa, M.H. Thoma, Phys. Rev. C 75, 064908 (2007)

    Article  ADS  Google Scholar 

  44. A. Adil, M. Gyulassy, W.A. Horowitz, S. Wicks, Phys. Rev. C 75, 044906 (2007)

    Article  ADS  Google Scholar 

  45. S. Peigne, P.B. Gossiaux, T. Gousset, JHEP 0604, 011 (2006)

    Article  ADS  Google Scholar 

  46. K. Dusling, I. Zahed, Nucl. Phys. A 833, 172 (2010)

    Article  ADS  Google Scholar 

  47. S. Cho, I. Zahed, Phys. Rev. C 82, 064904 (2010)

    Article  ADS  Google Scholar 

  48. B.F. Jiang, D. Hou, J.R. Li, J. Phys. G 42, 085107 (2015)

    Article  ADS  Google Scholar 

  49. B. f. Jiang, D. f. Hou and J. r. Li, Nucl. Phys. A 953, 176 (2016)

  50. M. Elias, J. Peralta-Ramos, E. Calzetta, Phys. Rev. D 90, 014038 (2014)

    Article  ADS  Google Scholar 

  51. C. Han, D..f Hou, B..f. Jiang, J..r Li, Eur. Phys. J. A 53, 205 (2017)

  52. K.B. Fadafan, JHEP 0812, 051 (2008)

    Article  Google Scholar 

  53. K. Bitaghsir Fadafan, Eur. Phys. J. C 68, 505 (2010)

  54. K.B. Fadafan, H. Soltanpanahi, JHEP 1210, 085 (2012)

    Article  ADS  Google Scholar 

  55. M. Yousuf Jamal, V. Chandra, Eur. Phys. J. C 79, 761 (2019)

  56. P.K. Srivastava, S.K. Tiwari, C.P. Singh, Phys. Rev. D 82, 014023 (2010)

    Article  ADS  Google Scholar 

  57. Bing-feng Jiang, De.-fu Hou, Jia-rong Li, Phys. Rev. D 94, 074026 (2016)

  58. Bjoern Schenke, Michael Strickland, Carsten Greiner, Markus H. Thoma, Phys. Rev. D 73, 125004 (2006)

    Article  ADS  Google Scholar 

  59. S. Mrowczynski, Phys. Lett. B 314, 118 (1993)

    Article  ADS  Google Scholar 

  60. P. Romatschke, M. Strickland, Phys. Rev. D 68, 036004 (2003)

    Article  ADS  Google Scholar 

  61. P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954)

    Article  ADS  Google Scholar 

  62. A. Bazabov et al., Phys. Rev D 90, 094503 (2014)

    Article  ADS  Google Scholar 

  63. N. Haque, A. Bandyopadhyay, J..O. Andersen, Munshi G. Mustafa, M. Strickland, Nan Su, JHEP 1405, 027 (2014)

  64. J.O. Andersen, N. Haque, M.G. Mustafa, M. Strickland, Phys. Rev. D 93, 054045 (2016)

    Article  ADS  Google Scholar 

  65. Szabocls Borsanyi et al., Phys. Lett. B 370, 99–104 (2014)

    Article  ADS  Google Scholar 

  66. M. Yousuf, S. Mitra, V. Chandra, Phys. Rev. D 95, 094022 (2017)

    Article  ADS  Google Scholar 

  67. M. Kurian, S.K. Das, V. Chandra, Phys. Rev. D 100(7), 074003 (2019)

    Article  ADS  Google Scholar 

  68. M.Y. Jamal, I. Nilima, V. Chandra, V.K. Agotiya, Phys. Rev. D 97(9), 094033 (2018)

    Article  ADS  Google Scholar 

  69. V.K. Agotiya, V. Chandra, M.Y. Jamal, I. Nilima, Phys. Rev. D 94(9), 094006 (2016)

    Article  ADS  Google Scholar 

  70. A. Kumar, M.Y. Jamal, V. Chandra, J.R. Bhatt, Phys. Rev. D 97(3), 034007 (2018)

    Article  ADS  Google Scholar 

  71. M. Yousuf Jamal, S. Mitra, V. Chandra, Springer Proc. Phys. 203, 117 (2018)

  72. M.Y. Jamal, S. Mitra, V. Chandra, J. Phys. G 47(3), 035107 (2020)

    Article  ADS  Google Scholar 

  73. H. Berrehrah, E. Bratkovskaya, W. Cassing, P.B. Gossiaux, J. Aichelin, Phys. Rev. C 91, 054902 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M. Y. Jamal acknowledges NISER Bhubaneswar for providing postdoctoral position. BM acknowledges financial support from DAE and DST Government of India. We would like to acknowledge people of INDIA for their generous support for the research in fundamental sciences in the country.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yousuf Jamal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamal, M.Y., Mohanty, B. Energy loss of heavy quarks in the isotropic collisional hot QCD medium at a finite chemical potential. Eur. Phys. J. Plus 136, 130 (2021). https://doi.org/10.1140/epjp/s13360-021-01098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01098-4

Navigation