Skip to main content
Log in

\({\mathcal {H}}\)olographic \({\mathcal {N}}\)aturalness and \({\mathcal {C}}\)osmological \({\mathcal {R}}\)elaxation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We rediscuss the main Cosmological Problems as illusions originated from our ignorance of the hidden information holographically stored in vacuo. The Cosmological vacuum state is full of a large number of dynamical quantum hairs, dubbed hairons, which dominate the Cosmological Entropy. We elaborate on the Cosmological Constant (CC) problem, in both the dynamical and time-constant possibilities. We show that all dangerous quantum mixings between the CC and the Planck energy scales are exponentially suppressed as an entropic collective effect of the hairon environment. As a consequence, the dark energy scale is UV insensitive to any Planckian corrections. On the other hand, the inflation scale is similarly stabilized from any radiative effects. In the case of the Dark energy, we show the presence of a holographic entropic attractor, favoring a time variation of \(\Lambda \rightarrow 0\) in future rather than a static CC case, i.e., the \(w>-1\) Dynamical DE is favored over a CC or a \(w<-1\) phantom cosmology. In both the inflation and dark energy sectors, we elaborate on the Trans-Planckian problem, in relation with the recently proposed Trans-Planckian Censorship Conjecture (TCC). We show that the probability for any sub-Planckian wavelength modes to survive after inflation is completely negligible as a holographic wash-out mechanism. In other words, the hairons provide for a holographic decoherence of the transplanckian modes in a holographic scrambling time. This avoids the TCC strong bounds on the Inflaton and DE potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: I state that the research datas of this paper are deposited in publicly available repositories.]

Notes

  1. See Ref. [2] for a review on the CC problem.

  2. Interesting discussions on implications on the Primordial Black Hole production in the early Universe can be found in Refs. [10, 11]

  3. Possible quantum hairs were discussed by many authors as a way-out to the Black Hole information paradox, e.g., see Refs. [15,16,17,18,19,20,21,22,23,24,25,26,27].

  4. See also recent discussions of the \(\mathcal {HN}\) in contest of particle physics [28] and topological aspects [29].

  5. The HN paradigm is flowing in continuity with many intuitions and approaches proposed in literature before in Refs. [30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57].

  6. A dynamical relaxation mechanism can be considered in a string-theory holographic setup as in Ref. [67].

  7. See Refs. [68,69,70, 70,71,72,73] for a panoramic view on the problem of phantom cosmology and singularities.

  8. See also Ref. [9] for stronger TCC bounds on the tensor-to-scalar ratio r parameter of inflation.

References

  1. Planck Collaboration, P. A. R. Ade et al., arXiv:1502.01589 [astro-ph.CO]

  2. T. Padmanabhan, Gen. Rel. Grav. 40, 529 (2008). https://doi.org/10.1007/s10714-007-0555-7. [arXiv:0705.2533 [gr-qc]]

    Article  ADS  Google Scholar 

  3. A.S. Eddington, The Constants of Nature, in The World of Mathematics, vol. 2, ed. by J.R. Newman (Simon & Schuster, New York, 1956), pp. 1074–1093

    Google Scholar 

  4. G. Obied, H. Ooguri, L. Spodyneiko, C. Vafa, arXiv:1806.08362 [hep-th]

  5. G. Dvali, C. Gomez, JCAP 1401, 023 (2014). https://doi.org/10.1088/1475-7516/2014/01/023. [arXiv:1312.4795 [hep-th]]

    Article  ADS  Google Scholar 

  6. G. Dvali, C. Gomez, Fortschr. Phys. 67(1–2), 1800092 (2019). https://doi.org/10.1002/prop.201800092. [arXiv:1806.10877 [hep-th]]

    Article  MathSciNet  Google Scholar 

  7. A. Bedroya, C. Vafa, arXiv:1909.11063 [hep-th]

  8. A. Bedroya, R. Brandenberger, M. Loverde, C. Vafa, Phys. Rev. D 101(10), 103502 (2020). https://doi.org/10.1103/PhysRevD.101.103502. [arXiv:1909.11106 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Mizuno, S. Mukohyama, S. Pi, Y.L. Zhang, arXiv:1910.02979 [astro-ph.CO]

  10. R.G. Cai, S.J. Wang, Phys. Rev. D 101(4), 043508 (2020). https://doi.org/10.1103/PhysRevD.101.043508. [arXiv:1910.07981 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  11. R.G. Cai, S.J. Wang, arXiv:1912.00607 [hep-th]

  12. R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Vintage Books, London, 2004)

    MATH  Google Scholar 

  13. A. Strominger, JHEP 0110, 034 (2001). https://doi.org/10.1088/1126-6708/2001/10/034. arXiv:hep-th/0106113

    Article  ADS  Google Scholar 

  14. R. Bousso, A. Maloney, A. Strominger, Phys. Rev. D 65, 104039 (2002). https://doi.org/10.1103/PhysRevD.65.104039. arXiv:hep-th/0112218

    Article  ADS  MathSciNet  Google Scholar 

  15. G. Veneziano, Proceedings Meeting on Hot Hadronic Matter: Theory and Experiments. Europhysics Letters, vol. 2, p. 133, (1986)

  16. S.R. Coleman, J. Preskill, F. Wilczek, Nucl. Phys. B 378, 175 (1992). https://doi.org/10.1016/0550-3213(92)90008-Y. arXiv:hep-th/9201059

    Article  ADS  Google Scholar 

  17. J. Preskill, In *Houston 1992, Proceedings, Black holes, membranes, wormholes and superstrings* 22–39, and Caltech Pasadena-CALT-68-1819 (92,rec.Oct.) , p.17, [arXiv:hep-th/9209058]

  18. S.B. Giddings, J.A. Harvey, J.G. Polchinski, S.H. Shenker, A. Strominger, Phys. Rev. D 50, 6422 (1994). https://doi.org/10.1103/PhysRevD.50.6422. arXiv:hep-th/9309152

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Dvali, C. Gomez, Phys. Lett. B 719, 419 (2013). https://doi.org/10.1016/j.physletb.2013.01.020. [arXiv:1203.6575 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  20. G. Veneziano, Class. Quant. Grav. 30, 092001 (2013)

    Article  ADS  Google Scholar 

  21. A. Strominger, JHEP 1407, 152 (2014). https://doi.org/10.1007/JHEP07(2014)152. [arXiv:1312.2229 [hep-th]]

    Article  ADS  Google Scholar 

  22. S.W. Hawking, M.J. Perry, A. Strominger, Phys. Rev. Lett. 116(23), 231301 (2016). https://doi.org/10.1103/PhysRevLett.116.231301. [arXiv:1601.00921 [hep-th]]

    Article  ADS  Google Scholar 

  23. G. Dvali, C. Gomez, D. Lust, Phys. Lett. B 753, 173 (2016). https://doi.org/10.1016/j.physletb.2015.11.073. [arXiv:1509.02114 [hep-th]]

    Article  ADS  Google Scholar 

  24. H.W. Chiang, Y.H. Kung, P. Chen, arXiv:2004.05045 [gr-qc]

  25. J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Phys. Lett. B 267, 465 (1991). https://doi.org/10.1016/0370-2693(91)90895-W

    Article  ADS  MathSciNet  Google Scholar 

  26. J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Phys. Rev. D 94(2), 025007 (2016). https://doi.org/10.1103/PhysRevD.94.025007. [arXiv:1605.01653 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Addazi, P. Chen, A. Marciano, Y.S. Wu, arXiv:1707.00347 [hep-th]

  28. A. Addazi, arXiv:2004.08372 [hep-th]

  29. A. Addazi, arXiv:2005.02040 [hep-th]

  30. M. Li, Phys. Lett. B 603, 1 (2004). https://doi.org/10.1016/j.physletb.2004.10.014. arXiv:hep-th/0403127

    Article  ADS  Google Scholar 

  31. S. Wang, Y. Wang, M. Li, Phys. Rep. 696, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.003. [arXiv:1612.00345 [astro-ph.CO]]

    Article  ADS  MathSciNet  Google Scholar 

  32. D. Pavon, W. Zimdahl, Phys. Lett. B 628, 206 (2005). https://doi.org/10.1016/j.physletb.2005.08.134. arXiv:gr-qc/0505020

    Article  ADS  Google Scholar 

  33. S. Nojiri, S.D. Odintsov, Gen. Relativity Gravit. 38, 1285 (2006). https://doi.org/10.1007/s10714-006-0301-6. arXiv:hep-th/0506212

    Article  ADS  Google Scholar 

  34. K. Enqvist, M.S. Sloth, Phys. Rev. Lett. 93, 221302 (2004). https://doi.org/10.1103/PhysRevLett.93.221302. arXiv:hep-th/0406019

    Article  ADS  Google Scholar 

  35. X. Zhang, Int. J. Mod. Phys. D 14, 1597 (2005). https://doi.org/10.1142/S0218271805007243. arXiv:astro-ph/0504586

    Article  ADS  Google Scholar 

  36. B. Guberina, R. Horvat, H. Stefancic, JCAP 0505, 001 (2005). https://doi.org/10.1088/1475-7516/2005/05/001. arXiv:astro-ph/0503495

    Article  ADS  Google Scholar 

  37. E. Elizalde, S. Nojiri, S.D. Odintsov, P. Wang, Phys. Rev. D 71, 103504 (2005). https://doi.org/10.1103/PhysRevD.71.103504. arXiv:hep-th/0502082

    Article  ADS  Google Scholar 

  38. M. Ito, Europhys. Lett. 71, 712 (2005). https://doi.org/10.1209/epl/i2005-10151-x. arXiv:hep-th/0405281

    Article  ADS  Google Scholar 

  39. Y.G. Gong, B. Wang, Y.Z. Zhang, Phys. Rev. D 72, 043510 (2005). https://doi.org/10.1103/PhysRevD.72.043510. arXiv:hep-th/0412218

    Article  ADS  Google Scholar 

  40. E.N. Saridakis, Phys. Lett. B 660, 138 (2008). https://doi.org/10.1016/j.physletb.2008.01.004. [arXiv:0712.2228 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  41. Y. Gong, T. Li, Phys. Lett. B 683, 241 (2010). https://doi.org/10.1016/j.physletb.2009.12.040. [arXiv:0907.0860 [hep-th]]

    Article  ADS  Google Scholar 

  42. M. Bouhmadi-Lopez, A. Errahmani, T. Ouali, Phys. Rev. D 84, 083508 (2011). https://doi.org/10.1103/PhysRevD.84.083508. [arXiv:1104.1181 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  43. M. Malekjani, Astrophys. Space Sci. 347, 405 (2013). https://doi.org/10.1007/s10509-013-1522-2. [arXiv:1209.5512 [gr-qc]]

    Article  ADS  Google Scholar 

  44. M. Khurshudyan, J. Sadeghi, R. Myrzakulov, A. Pasqua, H. Farahani, Adv. High Energy Phys. 2014, 878092 (2014). https://doi.org/10.1155/2014/878092. [arXiv:1404.2141 [gr-qc]]

    Article  Google Scholar 

  45. R.C.G. Landim, Int. J. Mod. Phys. D 25(04), 1650050 (2016). https://doi.org/10.1142/S0218271816500504. [arXiv:1508.07248 [hep-th]]

    Article  ADS  Google Scholar 

  46. C. Gao, F. Wu, X. Chen, Y.G. Shen, Phys. Rev. D 79, 043511 (2009). https://doi.org/10.1103/PhysRevD.79.043511. [arXiv:0712.1394 [astro-ph]]

    Article  ADS  Google Scholar 

  47. M. Li, C. Lin, Y. Wang, JCAP 0805, 023 (2008). https://doi.org/10.1088/1475-7516/2008/05/023. [arXiv:0801.1407 [astro-ph]]

    Article  ADS  Google Scholar 

  48. F.K. Anagnostopoulos, S. Basilakos, E.N. Saridakis, [arXiv:2005.10302 [gr-qc]]

  49. R. Horvat, Phys. Lett. B 699, 174–176 (2011)

    Article  ADS  Google Scholar 

  50. S. Nojiri, S.D. Odintsov, E.N. Saridakis, Phys. Lett. B 797, 134829 (2019)

    Article  MathSciNet  Google Scholar 

  51. T. Paul, EPL 127(2), 20004 (2019). [arXiv:1905.13033 [gr-qc]]

    Article  ADS  Google Scholar 

  52. A. Bargach, F. Bargach, A. Errahmani, T. Ouali, Int. J. Mod. Phys. D 29(02), 2050010 (2020). [arXiv:1904.06282 [hep-th]]

    Article  ADS  Google Scholar 

  53. E. Elizalde, A. Timoshkin, Eur. Phys. J. C 79(9), 732 (2019). [arXiv:1908.08712 [gr-qc]]

    Article  ADS  Google Scholar 

  54. A. Oliveros, M.A. Acero, EPL 128(5), 59001 (2019). [arXiv:1911.04482 [gr-qc]]

    Article  Google Scholar 

  55. S. Nojiri, S.D. Odintsov, Gen. Relativity Grav. 38, 1285 (2006). https://doi.org/10.1007/s10714-006-0301-6. arXiv:hep-th/0506212

    Article  ADS  Google Scholar 

  56. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, T. Paul, Phys. Rev. D 102(2), 023540 (2020). https://doi.org/10.1103/PhysRevD.102.023540. [arXiv:2007.06829 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  57. S. Nojiri, S.D. Odintsov, Eur. Phys. J. C 77(8), 528 (2017). https://doi.org/10.1140/epjc/s10052-017-5097-x. [arXiv:1703.06372 [hep-th]]

    Article  ADS  Google Scholar 

  58. S. Nojiri, S.D. Odintsov, eConf C 0602061, 06 (2006)

  59. S. Nojiri, S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007). https://doi.org/10.1142/S0219887807001928. arXiv:hep-th/0601213

    Article  Google Scholar 

  60. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011). https://doi.org/10.1016/j.physrep.2011.04.001. [arXiv:1011.0544 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  61. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011). https://doi.org/10.1016/j.physrep.2011.09.003. [arXiv:1108.6266 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  62. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Late-time evolution. Phys. Rep. 692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001. [arXiv:1705.11098 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8. [arXiv:1205.3421 [gr-qc]]

    Article  ADS  Google Scholar 

  64. P. Hayden, J. Preskill, JHEP 0709, 120 (2007). https://doi.org/10.1088/1126-6708/2007/09/120. [arXiv:0708.4025 [hep-th]]

    Article  ADS  Google Scholar 

  65. Y. Sekino, L. Susskind, JHEP 0810, 065 (2008). https://doi.org/10.1088/1126-6708/2008/10/065. [arXiv:0808.2096 [hep-th]]

    Article  ADS  Google Scholar 

  66. S.H. Shenker, D. Stanford, JHEP 1403, 067 (2014). https://doi.org/10.1007/JHEP03(2014)067. [arXiv:1306.0622 [hep-th]]

    Article  ADS  Google Scholar 

  67. C. Charmousis, E. Kiritsis, F. Nitti, JHEP 1709, 031 (2017). https://doi.org/10.1007/JHEP09(2017)031. [arXiv:1704.05075 [hep-th]]

    Article  ADS  Google Scholar 

  68. S. Nojiri, S.D. Odintsov, Phys. Rev. D 72, 023003 (2005). https://doi.org/10.1103/PhysRevD.72.023003. arXiv:hep-th/0505215

    Article  ADS  Google Scholar 

  69. K. Bamba, S. Nojiri, S.D. Odintsov, JCAP 0810, 045 (2008). https://doi.org/10.1088/1475-7516/2008/10/045. [arXiv:0807.2575 [hep-th]]

    Article  ADS  Google Scholar 

  70. S. Capozziello, S. Nojiri, S.D. Odintsov, Phys. Lett. B 632, 597 (2006). https://doi.org/10.1016/j.physletb.2005.11.012. arXiv:hep-th/0507182

    Article  ADS  Google Scholar 

  71. S. Nojiri, S.D. Odintsov, Phys. Rev. D 70, 103522 (2004). https://doi.org/10.1103/PhysRevD.70.103522. arXiv:hep-th/0408170

    Article  ADS  Google Scholar 

  72. S. Nojiri, S.D. Odintsov, Phys. Lett. B 595, 1 (2004). https://doi.org/10.1016/j.physletb.2004.06.060. arXiv:hep-th/0405078

    Article  ADS  Google Scholar 

  73. S. Capozziello, M. De Laurentis, S. Nojiri, S.D. Odintsov, Phys. Rev. D 79, 124007 (2009). https://doi.org/10.1103/PhysRevD.79.124007. [arXiv:0903.2753 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  74. G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Sci. Ser. B 59, 135 (1980)

    Google Scholar 

  75. W. Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007). https://doi.org/10.1103/PhysRevD.76.064004. [arXiv:0705.1158 [astro-ph]]

    Article  ADS  Google Scholar 

  76. S. Nojiri, S.D. Odintsov, Phys. Rev. D 77, 026007 (2008). https://doi.org/10.1103/PhysRevD.77.026007. [arXiv:0710.1738 [hep-th]]

    Article  ADS  Google Scholar 

  77. A.A. Costa, X.D. Xu, B. Wang, E.G.M. Ferreira, E. Abdalla, Phys. Rev. D 89(10), 103531 (2014). https://doi.org/10.1103/PhysRevD.89.103531. [arXiv:1311.7380 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  78. E.G.M. Ferreira, J. Quintin, A.A. Costa, E. Abdalla, B. Wang, Phys. Rev. D 95(4), 043520 (2017). https://doi.org/10.1103/PhysRevD.95.043520. [arXiv:1412.2777 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  79. A.A. Costa, R.C.G. Landim, B. Wang, E. Abdalla, Eur. Phys. J. C 78(9), 746 (2018). https://doi.org/10.1140/epjc/s10052-018-6237-7. [arXiv:1803.06944 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  80. C. Li, X. Ren, M. Khurshudyan, Y.F. Cai, Phys. Lett. B 801, 135141 (2020). https://doi.org/10.1016/j.physletb.2019.135141. [arXiv:1904.02458 [astro-ph.CO]]

    Article  Google Scholar 

  81. E. Elizalde, M. Khurshudyan, S. Nojiri, Int. J. Mod. Phys. D 28(01), 1950019 (2018). https://doi.org/10.1142/S0218271819500196. [arXiv:1809.01961 [gr-qc]]

    Article  ADS  Google Scholar 

  82. A. Addazi, P. Dona, M. Antonino, Chin. Phys. C 42(7), 075102 (2018). https://doi.org/10.1088/1674-1137/42/7/075102

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank S. Pi for valuable comments on these aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Addazi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addazi, A. \({\mathcal {H}}\)olographic \({\mathcal {N}}\)aturalness and \({\mathcal {C}}\)osmological \({\mathcal {R}}\)elaxation. Eur. Phys. J. Plus 135, 940 (2020). https://doi.org/10.1140/epjp/s13360-020-00933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00933-4

Navigation