Skip to main content
Log in

Exact solutions for a quantum ring with a dipolar impurity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study analytically the Schrödinger equation for a system made up of a quantum ring with a dipolar impurity under the effect of an Aharonov–Bohm field, and we choose the pseudoharmonic oscillator as a confinement potential. We calculate the exact values of the energies and we also get the exact expressions of the wave functions. We study the effects of the dipole moment of the impurity on the energies of the levels as well as on those of the transitions and this for different materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Görlitz et al., Phys. Rev. Lett. 87, 130402 (2001)

    Article  ADS  Google Scholar 

  2. K. Martiyanov, V. Makhalov, A. Turlapov, Phys. Rev. Lett. 105, 030404 (2010)

    Article  ADS  Google Scholar 

  3. A.I. Safonov, S.A. Vasilyev, I.S. Yasnikov, I.I. Lukashevich, S. Jaakkola, Phys. Rev. Lett. 81, 4545 (1998)

    Article  ADS  Google Scholar 

  4. T. Chakraborty, Quantum Dots—A Survey of the Properties of Artificial Atoms (Elsevier, Amsterdam, 1999)

    Google Scholar 

  5. S. Pal, M. Ghosh, C.A. Duque, Philos. Mag. 99, 2457 (2019)

    Article  ADS  Google Scholar 

  6. Z.-H. Liang, C.-Y. Cai, J.-L. Xiao, Int. J. Theor. Phys. 58, 2320 (2019)

    Article  Google Scholar 

  7. T. Chen, W. Xie, S. Liang, J. Lumin. 139, 64 (2013)

    Article  Google Scholar 

  8. E.C. Niculescu, C. Stan, G. Tiriba, C. Trusca, Eur. Phys. J. B 90, 100 (2017)

    Article  ADS  Google Scholar 

  9. D. Bejan, C. Stan, E.C. Niculescu, Opt. Mater. 75, 827 (2018)

    Article  ADS  Google Scholar 

  10. D. Bejan, C. Stan, Eur. Phys. J. Plus 134, 127 (2019)

    Article  Google Scholar 

  11. M.-C. Zhang, B. An, H.-F. Guo-Qing, J. Math. Chem. 48, 876 (2010)

    Article  MathSciNet  Google Scholar 

  12. A. Hautot, J. Math. Phys. 14, 1320 (1973)

    Article  ADS  Google Scholar 

  13. C. Berkdemir, J. Math. Chem. 46, 139 (2009)

    Article  MathSciNet  Google Scholar 

  14. M. Moumni, M. Falek, J. Math. Phys. 57, 072104 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Kumari, R.K. Yadav, A. Khare, B.P. Mandal, J. Math. Phys. 59, 062103 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. R.H. Parmar, Indian J. Phys. 93, 1163 (2019)

    Article  ADS  Google Scholar 

  17. R.H. Parmar, Eur. Phys. J. Plus 134, 86 (2019)

    Article  ADS  Google Scholar 

  18. S.M. Ikhdair, R. Sever, Centr. Eur. J. Phys. 6, 685 (2008)

    ADS  Google Scholar 

  19. K.J. Oyewumi, K.D. Sen, J. Math. Chem. 50, 1039 (2012)

    Article  MathSciNet  Google Scholar 

  20. S.H. Dong, Factorization Method in Quantum Mechanics (Fundamental Theories of Physics), vol. 150 (Springer, Netherlands, 2007) and references therein

  21. W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)

    Article  ADS  Google Scholar 

  22. C.M. Lee, K.S. Chan, J. Appl. Phys. 114, 143708 (2013)

    Article  ADS  Google Scholar 

  23. L.-Q. Feng, J.-L. Xiao, Opt. Quantum Electron. 49, 304 (2017)

    Article  Google Scholar 

  24. J. Yuan, L. Wang, Z. Xiong et al., Eur. Phys. J. Plus 133, 395 (2018)

    Article  Google Scholar 

  25. E. Naghdi, E. Sadeghi, P. Zamani, Chin. J. Phys. 56, 2139 (2018)

    Article  Google Scholar 

  26. A. Yaseen, A. Shaer, M.K. Elsaid, Chin. J. Phys. 60, 598 (2019)

    Article  Google Scholar 

  27. G.T. Tedondje, A.J. Fotue, S.C. Kenfack et al., Eur. Phys. J. Plus 135, 244 (2020)

    Article  Google Scholar 

  28. M. Moumni, A. BenSlama, S. Zaim, J. Geom. Phys. 61, 151 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Cristea, Eur. Phys. J. Plus 131, 86 (2016)

    Article  Google Scholar 

  30. J.L. Zhou, J.J. Xiong, Phys. Rev. B 41, 12274 (1990)

    Article  ADS  Google Scholar 

  31. S. Vasilyev, J. Jarvinen, A.I. Safonov, A.A. Kharitonov, I.I. Lukashevich, S. Jaakkola, Phys. Rev. Lett. 89, 153002 (2002)

    Article  ADS  Google Scholar 

  32. A. De Martino, D. Klöpfer, D.U. Matrasulov, R. Egger, Phys. Rev. Lett. 112, 186603 (2014)

    Article  ADS  Google Scholar 

  33. D. Klöpfer, A. de Martino, D.U. Matrasulov, R. Egger, Eur. Phys. J. B 87, 187 (2014)

    Article  ADS  Google Scholar 

  34. M. Gadella, J. Negro, L.M. Nieto, G.P. Pronko, Int. J. Theor. Phys. 50, 2019 (2011)

    Article  Google Scholar 

  35. Y. Gindikin, V.A. Sablikov, Phys. Rev. B 98, 115137 (2018)

    Article  ADS  Google Scholar 

  36. C. González-Santander, F. Domínguez-Adame, R.A. Römer, Phys. Rev. B 84, 235103 (2011)

    Article  ADS  Google Scholar 

  37. M.J. Bueno, J. Lemos de Melo, C. Furtado et al., Eur. Phys. J. Plus 129, 201 (2014)

    Article  Google Scholar 

  38. R.R.S. Oliveira et al., Eur. Phys. J. Plus 134, 495 (2019)

    Article  Google Scholar 

  39. P. Ghosh, D. Nath, Int. J. Quantum Chem. 120, e26153 (2020)

    Article  Google Scholar 

  40. E. Mathieu, J. Math. Pures Appl. 13, 137 (1868)

    Google Scholar 

  41. N.R. Jazar, Mathieu equation, in Approximation Methods in Science and Engineering (Springer, New York, NY, 2020)

  42. G. Floquet, Annales de l’Ecole Normale Supérieure 12, 47 (1883)

    Article  Google Scholar 

  43. F. Bloch, Z. Phys. 52, 555 (1928)

    Article  ADS  Google Scholar 

  44. N. Ferkous, A. Bounames, Commun. Theor. Phys. 59, 679 (2013)

    Article  ADS  Google Scholar 

  45. J.A. Neto, J.D.S. Oliveira, C. Furtado et al., Eur. Phys. J. Plus 133, 185 (2018)

    Article  Google Scholar 

  46. S. Kettemann, P. Fulde, P. Strehlow, Phys. Rev. Lett. 83, 4325 (1999)

    Article  ADS  Google Scholar 

  47. H. Ajiki, T. Ando, J. Phys. Soc. Jpn. 62, 2470 (1993)

    Article  ADS  Google Scholar 

  48. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1972)

    MATH  Google Scholar 

  49. I.S. Gradshteyn, I.M. Ryzhik, in Table of Integrals, Series, and Products, ed. by A. Jeffrey, D. Zwillinger (Elsevier, London, 2007)

    MATH  Google Scholar 

  50. E. Paspalakis, J. Boviatsis, S. Baskoutas, J. Appl. Phys. 114, 153107 (2013)

    Article  ADS  Google Scholar 

  51. D. Bejan, Eur. Phys. J. B 90, 54 (2017)

    Article  ADS  Google Scholar 

  52. J. Jayarubi, A.J. Peter, C.W. Lee, Eur. Phys. J. D 73, 63 (2019)

    Article  ADS  Google Scholar 

  53. S. Evangelou, Phys. B Condens. Matter 556, 170 (2019)

    Article  ADS  Google Scholar 

  54. R.D. Nelson Jr., D.R. Lide Jr., A.A. Maryott, Selected Values Of Electric Dipole Moments for Molecules in the Gaz Phase (National Standard Reference Data Series-National Bureau of Standards 10, U.S. Government Printing Office Washington, 1967)

  55. Y. Chrafih et al., Eur. Phys. J. Appl. Phys. 86, 20101 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was done with funding from the DGRSDT of the Ministry of Higher Education and Scientific Research in Algeria as part of the PRFU B00L02UN070120190003. The authors would like to thank the referee who greatly contributed to improving the clarity and the quality of this work through his comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Moumni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baazouzi, M., Moumni, M. & Falek, M. Exact solutions for a quantum ring with a dipolar impurity. Eur. Phys. J. Plus 135, 894 (2020). https://doi.org/10.1140/epjp/s13360-020-00922-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00922-7

Navigation