Skip to main content
Log in

Blast waves in a non-ideal self-gravitating gas with magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The propagation of the blast wave in self-gravitating non-ideal gas under the influence of axial magnetic field is investigated. The magnetic pressure and density are considered to be varying according to the power law. The approximate analytical solutions are obtained by expanding the flow variables in the form of power series using Sakurai’s technique. The zeroth- and first-order approximate solutions of self-gravitating non-ideal gas with magnetic field are discussed in detail. Solutions for zeroth-order approximation are constructed in analytical form. The effect of the flow parameters, namely parameter of non-idealness, adiabatic exponent, ambient density variation exponent and gravitational parameter on the flow variables, is discussed in detail. The results obtained in this work are compared with the results obtained by Sakurai and Nath, which are in good agreement

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment:...].

References

  1. C. Greifinger, J.D. Cole, Similarity solution for cylindrical magnetohydrodynamic blast waves. Phys. Fluids 5(12), 1597–1607 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. H.P. Greenspan, Similarity solution for a cylindrical shock-magnetic field interaction. Phys. Fluids 5(3), 255–259 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. C.K. Chu, Dynamics of ionizing shock waves: shocks in transverse magnetic fields. Phys. Fluids 7(8), 1349–1357 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M.P. Rangarao, B.V. Ramana, Self-similar cylindrical magnetogasdynamic and ionizing shock waves. Int. J. Eng. Sci. 11(3), 337–351 (1973)

    Article  MATH  Google Scholar 

  5. S.-C. Lin, Cylindrical shock waves produced by instantaneous energy release. J. Appl. Phys. 25(1), 54–57 (1954)

    Article  ADS  MATH  Google Scholar 

  6. L. Hartmann, Accretion Processes in Star Formation, vol. 32 (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  7. B. Balick, A. Frank, Shapes and shaping of planetary nebulae. Ann. Rev. Astron. Astrophys. 40(1), 439–486 (2002)

    Article  ADS  Google Scholar 

  8. C.F. Stebbins, G.C. Vlases, An experimental study of transverse ionizing mhd shock waves. J. Plasma Phys. 2(4), 633–652 (1968)

    Article  ADS  Google Scholar 

  9. K.G. Guderley, Starke kugelige und zylindrische verdichtungsstosse in der nahe des kugelmitterpunktes bnw der zylinderachse. Luftfahrtforschung 19, 302 (1942)

    MathSciNet  MATH  Google Scholar 

  10. G.I. Taylor, The formation of a blast wave by a very intense explosion I. Theoretical discussion. Proc. R. Soc. Lond. Ser. A 201(1065), 159–174 (1950)

    Article  ADS  MATH  Google Scholar 

  11. G.I. Taylor, The formation of a blast wave by a very intense explosion II. Proc. R. Soc. Lond. Ser. A 201, 175–186 (1950)

    Article  ADS  MATH  Google Scholar 

  12. A. Sakurai, On the propagation and structure of the blast wave I. J. Phys. Soc. Jpn. 8(5), 662–669 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Sakurai, On the propagation and structure of a blast wave II. J. Phys. Soc. Jpn. 9(2), 256–266 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  14. M.J. Siddiqui, R. Arora, A. Kumar, Shock waves propagation under the influence of magnetic field. Chaos Solitons Fractals 97, 66–74 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. Chauhan, R. Arora, M.J. Siddiqui, Propagation of blast waves in a non-ideal magnetogasdynamics. Symmetry 11(4), 458 (2019)

    Article  MATH  Google Scholar 

  16. G. Nath, S. Singh, Cylindrical ionizing shock waves in a self-gravitating gas with magnetic field: power series method. J. Astrophys. Astron. 40(6), 47 (2019)

    Article  ADS  Google Scholar 

  17. I. Lerche, Mathematical theory of one-dimensional isothermal blast waves in a magnetic field. Aust. J. Phys. 32(5), 491–502 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  18. R.B. Larson, Numerical calculations of the dynamics of a collapsing proto-star. Mon. Not. R. Astron. Soc. 145(3), 271–295 (1969)

    Article  ADS  Google Scholar 

  19. M.V. Penston, Dynamics of self-gravitating gaseous spheres—III: analytical results in the free-fall of isothermal cases. Mon. Not. R. Astron. Soc. 144(4), 425–448 (1969)

    Article  ADS  Google Scholar 

  20. Leonid Ivanovich Sedov, Similarity and Dimensional Methods in Mechanics (CRC Press, New York, 1993)

    Google Scholar 

  21. P.A. Carrus, P.A. Fox, F. Haas, Z. Kopal, The propagation of shock waves in a stellar model with continuous density distribution. Astrophys. J. 113, 496–518 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.S. Shang, Recent research in magneto-aerodynamics. Prog. Aerosp. Sci. 37(1), 1–20 (2001)

    Article  Google Scholar 

  23. R.M. Lock, A.J. Mestel, Annular self-similar solutions in ideal magnetogasdynamics. J. Plasma Phys. 74(4), 531 (2008)

    Article  ADS  MATH  Google Scholar 

  24. G. Nath, J.P. Vishwakarma, V.K. Srivastava, A.K. Sinha, Propagation of magnetogasdynamic shock waves in a self-gravitating gas with exponentially varying density. J. Theor. Appl. Phys. 7(1), 15 (2013)

    Article  ADS  Google Scholar 

  25. G. Nath, A.K. Sinha, Magnetogasdynamic shock waves in non-ideal gas under gravitational field-isothermal flow. Int. J. Appl. Comput. Math. 3(1), 225–238 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Nath, S. Singh, Flow behind magnetogasdynamic exponential shock wave in self-gravitating gas. Int. J. Non-Linear Mech. 88, 102–108 (2017)

    Article  ADS  Google Scholar 

  27. G. Nath, R.P. Pathak, M. Dutta, Similarity solutions for unsteady flow behind an exponential shock in a self-gravitating non-ideal gas with azimuthal magnetic field. Acta Astronaut. 142, 152–161 (2018)

    Article  ADS  Google Scholar 

  28. K. Sharma, R. Arora, A. Chauhan, A. Tiwari, Propagation of waves in a nonideal magnetogasdynamics with dust particles. Z. Naturforsch. A 75(3), 193–200 (2020)

    Article  ADS  Google Scholar 

  29. A. Chauhan, R. Arora, Self-similar solutions of cylindrical shock wave in a dusty gas. Indian J. Phys. 1–9 (2019)

  30. K.K. Singh, J.P. Vishwakarma, Self-similar flow of a mixture of a non-ideal gas and small solid particles behind a shock wave in presence of heat conduction, radiation heat flux and a gravitational field. Meccanica 48(1), 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. S.I. Anisimov, O.M. Spiner, Motion of an almost ideal gas in the presence of a strong point explosion: PMM vol. 36 (5), pp. 883–887. PMM J. Appl. Math. Mech. 36(5), 883–887 (1972)

    Article  Google Scholar 

  32. C.C. Wu, P.H. Roberts, Shock-wave propagation in a sonoluminescing gas bubble. Phys. Rev. Lett. 70(22), 3424–3427 (1993)

    Article  ADS  Google Scholar 

  33. P.H. Roberts, C.C. Wu, Structure and stability of a spherical implosion. Phys. Lett. A 213(1–2), 59–64 (1996)

    Article  ADS  Google Scholar 

  34. J.D. Fiege, R.E. Pudritz, Helical fields and filamentary molecular clouds I. Mon. Not. R. Astron. Soc. 311(1), 85–104 (2000)

    Article  ADS  Google Scholar 

  35. S. Inutsuka, S.M. Miyama, A production mechanism for clusters of dense cores. Astrophys. J. 480(2), 681 (1997)

    Article  ADS  Google Scholar 

  36. T.A. Zhuravskaya, V.A. Levin, The propagation of converging and diverging shock waves under intense heat exchange conditions. PMM J. Appl. Math. Mech. 60(5), 745–752 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. G.J. Hutchens, Approximate cylindrical blast theory: near-field solutions. J. Appl. Phys. 77(7), 2912–2915 (1995)

    Article  ADS  Google Scholar 

  38. G. Nath, Unsteady isothermal flow behind a magnetogasdynamic shock wave in a self-gravitating gas with exponentially varying density. J. Theor. Appl. Phys. 8(3), 131 (2014)

    Article  ADS  Google Scholar 

  39. G. Nath, Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics. Ain Shams Eng. J. 3(4), 393–401 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The first author, Kajal Sharma, acknowledges the financial support awarded by “Department of Science and Technology,” New Delhi, under the scheme senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Arora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Arora, R. Blast waves in a non-ideal self-gravitating gas with magnetic field. Eur. Phys. J. Plus 135, 773 (2020). https://doi.org/10.1140/epjp/s13360-020-00738-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00738-5

Navigation