Skip to main content
Log in

Analysis of immiscible Newtonian and non-Newtonian micropolar fluid flow through porous cylindrical pipe enclosing a cavity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the considered problem, we presented a model for the flow of immiscible fluids (non-Newtonian and Newtonian) through the cylindrical pipe. Cylindrical pipe is constituted by two porous cylindrical shell enclosing a cylindrical cavity. Non-Newtonian (micropolar) fluid is flowing through the middle porous cylindrical shell, and other immiscible Newtonian fluids are flowing through the cavity and outer porous cylindrical shell. The flow of fluid through the outer porous cylindrical shell and cavity is governed by well-known Brinkman and Stoke’s equation, respectively. However, the flow of micropolar fluid through the middle porous cylindrical shell is governed by the field equation given by Eringen (Springer, Berlin, 2001). An analytical solution of the problem has been obtained by using the justified boundary conditions. The effects of various non-dimensional parameters such as permeability parameters, micropolar parameter, and viscosity ratio on the linear flow velocity, microrotational flow velocity and flow rate are examined graphically. The results are validated with the help of previously established result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. H.P.G. Darcy, Les Fontaines publiques de la ville de Dijon. Exposition et application des principes ‘a suivre et des formules ‘a employer dans les questions de distribution d’eau, etc. V. Dalamont (1856)

  2. H. Brinkman, Flow Turbul. Combust. 1, 27 (1949a)

    Google Scholar 

  3. T. Zlatanovski, Q. J. Mech. Appl. Math. 52, 111–126 (1999)

    MathSciNet  Google Scholar 

  4. N. Rudraiah, I. Shivakumaran, D. Palaniappan, D. Chandrashekar, Adv. Fluid Mech. 2, 253–256 (2004)

    Google Scholar 

  5. H. Ramkissoon, Acta Mech. 123, 227–233 (1997)

    MathSciNet  Google Scholar 

  6. D. Palaniappan, Zeitschrift fur angewandte Mathematik und Physik ZAMP 45, 832–838 (1994)

    ADS  Google Scholar 

  7. P.K. Yadav, A. Tiwari, S. Deo, A. Filippov, S. Vasin, Acta Mech. 215, 193–209 (2010)

    Google Scholar 

  8. P.K. Yadav, S. Deo, Meccanica 47, 1499–1516 (2012)

    MathSciNet  Google Scholar 

  9. P.K. Yadav, A. Tiwari, S. Deo, M.K. Yadav, A. Filippov, S. Vasin, E. Sherysheva, Colloid J. 75, 473–482 (2013)

  10. P.K. Yadav, A. Tiwari, P. Singh, Acta Mech. 229, 1869–1892 (2018)

    MathSciNet  Google Scholar 

  11. G.S. Beavers, D.D. Joseph, J. Fluid Mech. 30, 197–207 (1967)

    ADS  Google Scholar 

  12. S. Liu, J.H. Masliyah, Handbook of Porous Media (CRC Press, Boca Raton, 2005), pp. 99–160

    Google Scholar 

  13. P.K. Yadav, Meccanica 48, 1607–1622 (2013)

    MathSciNet  Google Scholar 

  14. T. Ariman, M. Turk, N. Sylvester, Int. J. Eng. Sci. 11, 905–930 (1973)

    Google Scholar 

  15. A.C. Eringen, Int. J. Eng. Sci. 2, 205–217 (1964)

    MathSciNet  Google Scholar 

  16. A.C. Eringen, J. Math. Mech. 16(1), 1–18 (1966)

    MathSciNet  Google Scholar 

  17. A.C. Eringen, Microcontinuum field theories: II Fluent media (Springer, 2001)

  18. T. Ariman, A.S. Cakmak, Rheol. Acta 7, 236–242 (1968)

    Google Scholar 

  19. T. Ariman, M. Turk, N. Sylvester, Int. J. Eng. Sci. 12, 273–293 (1974a)

    Google Scholar 

  20. S. Jaiswal, P.K. Yadav, Phys. Fluids 31, 071901 (2019)

    ADS  Google Scholar 

  21. J. Prakash, P. Sinha, Int. J. Eng. Sci. 13, 217–232 (1975)

    Google Scholar 

  22. M.A. Turk, N.D. Sylvester, T. Ariman, Trans. Soci. Rheol. 17, 1–21 (1973)

    Google Scholar 

  23. G. Bugliarello, J. Sevilla, Biorheology 7, 85–107 (1970)

    Google Scholar 

  24. T. Ariman, M. Turk, N. Sylvester, J. Appl. Mech. 41, 1–7 (1974b)

    ADS  Google Scholar 

  25. P. Chaturani, V. Upadhya, Biorheology 16, 419–428 (1979)

    Google Scholar 

  26. G. Lukaszewicz, Micropolar Fluids: Theory and Applications (Springer, Berlin, 1999)

    MATH  Google Scholar 

  27. B.D. Sharma, P.K. Yadav, Transp. Porous Media 120, 239–254 (2017)

    MathSciNet  Google Scholar 

  28. D.Y. Khanukaeva, A. Filippov, P. Yadav, A. Tiwari, Eur. J. Mech.-B Fluids 76, 73–80 (2019)

    ADS  MathSciNet  Google Scholar 

  29. D.Y. Khanukaeva, A. Filippov, P. Yadav, A. Tiwari, J. Mol. Liq. 294, 111558(1–8) (2019)

    Google Scholar 

  30. A.J. Chamkha, Mech. Res. Commun. 21(3), 281–288 (1994)

    Google Scholar 

  31. A.J. Chamkha, Int. J. Numer. Methods Heat Fluid Flow 11(5), 430–448 (2001)

    Google Scholar 

  32. J.C. Umavathi, A.J. Chamkha, A. Mateen, A. Al-Mudhaf, Nonlinear Anal. Model. Control 14(3), 397–415 (2009)

    Google Scholar 

  33. S. Parvin, R. Nasrin, M.A. Alim, N.F. Hossain, A.J. Chamkha, Int. J. Heat Mass Transf. 55, 5268–5274 (2012)

    Google Scholar 

  34. R. Mohebbi, M. Izadi, A.J. Chamkha, Phys. Fluids 29, 122009(1–13) (2017)

    ADS  Google Scholar 

  35. J. Raza, F.M. Oudina, A.J. Chamkha, Multidiscip. Model. Mater. Struct. 15(4), 737–757 (2019)

    Google Scholar 

  36. D. Toghraie, R. Mashayekhi, H. Arasteh, S. Sheykhi, M. Niknejadi, A.J. Chamkha, Int. J. Numer. Methods Heat Fluid Flow 30(4), 1795–1814 (2020)

    Google Scholar 

  37. J.C. Umavathi, J.P. Kumar, A.J. Chamkha, I. Pop, Transp. Porous Med. 61, 315–335 (2005)

    Google Scholar 

  38. R. Shail, Int. J. Eng. Sci. 11, 1103–1108 (1973)

    Google Scholar 

  39. A.J. Chamkha, J. Fluids Eng. 122, 117–124 (1999)

    Google Scholar 

  40. J.C. Umavathi, A.J. Chamkha, A. Mateen, A. Al-Mudhaf, Heat Mass Transf. 42, 81 (2005)

    ADS  Google Scholar 

  41. J.P. Kumar, J.C. Umavathi, A.J. Chamkha, I. Pop, Appl. Math. Mod. 34, 1175–1186 (2010)

    Google Scholar 

  42. A.J. Chamkha, T. Grosan, I. Pop, Int. Commun. Heat Mass Transf. 29(8), 1119–1127 (2002)

    Google Scholar 

  43. M. Keimanesh, M.M. Rashidi, A.J. Chamkha, R. Jafari, Comput. Math. Appl. 62, 2871–2891 (2011)

    MathSciNet  Google Scholar 

  44. A.J. Chamkha, M. Molana, A. Rahnama, F. Ghadami, Powder Technol. 332, 287–322 (2018)

    Google Scholar 

  45. J.R. Murthy, J. Srinivas, Int. J. Heat Mass Transf. 65, 254–264 (2013)

    Google Scholar 

  46. A. Siddiqui, Q. Azim, M. Rana, Nonlinear Sci. Lett. A 1, 67–76 (2010)

    Google Scholar 

  47. M. Devakar, N.C. Ramgopal, J. Porous Med. 18, 549–558 (2015)

  48. I.A. Ansari, S. Deo, Natl. Acad. Sci. Lett. 40, 211–214 (2017)

    Google Scholar 

  49. J.C. Umavathi, A.J. Chamkha, K.S.R. Sridhar, Transp. Porous Med. 85, 157–169 (2010)

    Google Scholar 

  50. F. Selimefendigil, H.F. Öztop, A.J. Chamkha, Int. J. Numer. Methods Heat Fluid Flow 30(4), 1755–1772 (2020)

    Google Scholar 

  51. P.K. Yadav, S. Jaiswal, T. Asim, R. Mishra, Eur. Phy. J. Plus 133, 247 (2018)

    Google Scholar 

  52. P. Yadav, S. Jaiswal, B. Sharma, Appl. Math. Mech. 39, 993–1006 (2018)

    Google Scholar 

  53. P.K. Yadav, S. Jaiswal, Can. J. Phys. 96, 1016–1028 (2018)

  54. A.J. Chamkha, Int. J. Eng. Sci. 33(3), 437–446 (1995)

    Google Scholar 

  55. M. Devakar, A. Raje, Eur. Phy. J. Plus 133, 180 (2018b)

    Google Scholar 

  56. M. Devakar, A. Raje, J. Braz. Soc. Mech. Sci. Eng. 40, 325 (2018)

    Google Scholar 

  57. A.J. Chamkha, Int. J. Heat Mass Transf. 45, 2509–2525 (2002)

    Google Scholar 

  58. A.J. Chamkha, Numer. Heat Transf. Part A Appl. Int. J. Comput. Methodol. 32(6), 653–675 (1997)

    ADS  Google Scholar 

  59. A.J. Chamkha, Int. J. Heat Fluid Flow 21, 740–746 (2000)

    Google Scholar 

  60. A. Raje, M. Devakar, Numerical Heat Transfer and Fluid Flow (Springer, Berlin, 2019), pp. 55–64

    Google Scholar 

  61. S. Jaiswal, P.K. Yadav, Arab. J. Sci. Eng. 45, 921–934 (2020)

  62. D.A. Nield, A. Bejan, Convection in Porous Media, 3rd edn. (Springer, New York, 2006)

  63. B. Straughan, Stability and Wave Motion in Porous Media (Springer, New York, 2008)

    MATH  Google Scholar 

  64. J. Happel, H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media (Springer, Netherlands, 1981)

  65. J.A. Ochoa-Tapia, S. Whitaker, Int. J. Heat Mass Transf. 38(14), 2647–2655 (1995)

    Google Scholar 

  66. J.A. Ochoa-Tapia, S. Whitaker, Int. J. Heat Mass Transf. 38(14), 2635–2646 (1995)

    Google Scholar 

  67. F.A. Coutelieris, J.M.P.Q. Delgado, Transport Processes in Porous Media (Springer, Berlin, 2012)

    Google Scholar 

Download references

Acknowledgements

Pramod Kumar Yadav is thankful to SERB, New Delhi for supporting this research work under the research Grant SR/FTP/MS-47/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Yadav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Verma, A.K. Analysis of immiscible Newtonian and non-Newtonian micropolar fluid flow through porous cylindrical pipe enclosing a cavity. Eur. Phys. J. Plus 135, 645 (2020). https://doi.org/10.1140/epjp/s13360-020-00672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00672-6

Navigation