Skip to main content
Log in

Rough curved microchannel slip flow

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper models a slip flow through a curved microchannel. The curved walls confining the flow have surface roughness of small amplitude. Through domain perturbation analysis, the analytical expression of the volumetric flow rate is obtained as a function of the Knudsen number of the slip flow, the channel radius of curvature and the parameters characterising the surface roughness. It is found that the surface roughness effect is decreased in the slip regime compared to the continuum case. The study further shows that the volumetric flow rate can be enhanced, depending on roughness parameters. The channel radius of curvature has a significant effect on the entire flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Debye, R.L. Cleland, J. Appl. Phys. 30, 843 (1959)

    Article  ADS  Google Scholar 

  2. S.T. Cho, K.T. Wise, Sens. Actuat. A-Phys. 36, 47 (1993)

    Article  Google Scholar 

  3. M. Gadel Hak, J. Fluids Eng. 121, 5 (1999)

    Article  Google Scholar 

  4. Y. Huang, A. Sanli Ergun, E. Hæggström, M.H. Badi, B. Khuri-Yakub, J. Microelectromech. Syst. 12, 128 (2003)

    Article  Google Scholar 

  5. H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)

    Article  ADS  Google Scholar 

  6. D.J. Beebe, G.A. Mensing, G.M. Walker, Annu. Rev. Biomed. Eng. 4, 261 (2002)

    Article  Google Scholar 

  7. Y.L. Zhang, R.V. Craster, O.K. Matar, J. Colloid Interface Sci. 264, 160 (2003)

    Article  ADS  Google Scholar 

  8. S. Tison, Vacuum 44, 1171 (1993)

    Article  ADS  Google Scholar 

  9. P. Wu, W.A. Little, Cryogenics 23, 273 (1983)

    Article  ADS  Google Scholar 

  10. P. Wu, W.A. Little, Cryogenics 24, 415 (1984)

    Article  ADS  Google Scholar 

  11. J.C. Harley, Y. Huang, H.H. Bau, J.N. Zemel, J. Fluid Mech. 284, 257 (1995)

    Article  ADS  Google Scholar 

  12. X.F. Peng, G.P. Peterson, Int. J. Heat Mass Transf. 39, 2599 (1996)

    Article  Google Scholar 

  13. Z.X. Li, D.X. Du, Z.Y. Guo, Microscale Therm. Eng. 7, 253 (2003)

    Article  Google Scholar 

  14. W.A. Ebert, E.M. Sparrow, J. Basic Eng. 87, 1018 (1965)

    Article  Google Scholar 

  15. E.B. Arkilic, M.A. Schmidt, K.S. Breuer, J. Microelectromech. Syst. 6, 167 (1997)

    Article  Google Scholar 

  16. F.E. Larrade, C. Housiadas, Y. Drossino, Int. J. Heat Mass Transf. 40, 2669 (2000)

    Article  Google Scholar 

  17. S.A. Scha, P.L. Chambre, Flow of Rarefied Gases, Fundamentals of Gas Dynamics (Princeton University Press, New Jersey, 1958)

    Google Scholar 

  18. K.-H.W. Chu, Z. Angew. Math. Phys. 47, 591 (1996)

    Article  Google Scholar 

  19. W.L. Li, J.W. Lin, S.C. Lee, M.D. Chen, J. Micromech. Microeng. 12, 149 (2002)

    Article  ADS  Google Scholar 

  20. H. Sun, M. Faghri, Numer. Heat Transfer, Part A 43, 1 (2003)

    Article  ADS  Google Scholar 

  21. Z. Duan, Y.S. Muzychka, J. Fluid Eng. 130, 031102 (2008)

    Article  Google Scholar 

  22. R. Garg, A. Agrawal, SN Appl. Sci. 1, 1035 (2019)

    Article  Google Scholar 

  23. R. Garg, A. Agrawal, AIP Adv. 9, 125114 (2019)

    Article  ADS  Google Scholar 

  24. R. Garg, A. Agrawal, Phys. Fluids 32, 052002 (2020)

    Article  Google Scholar 

  25. N.F. Okechi, S. Asghar, Eur. Phys. J. Plus 134, 165 (2019)

    Article  Google Scholar 

  26. N.F. Okechi, S. Asghar, Eur. J. Mech. B. Fluids 84, 81 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. N.F. Okechi, S. Asghar, Eur. J. Mech. B. Fluids 84, 15 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. N.F. Okechi, S. Asghar, D. Charreh, AIP Adv. 10, 035114 (2020)

    Article  ADS  Google Scholar 

  29. F.M. White, Viscous fluid flow (McGraw-Hill, New York, 2006)

    Google Scholar 

  30. C. Shen, Rarefied gas dynamics: fundamentals, simulation and micro flow (Springer, Berlin, 2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nnamdi Fidelis Okechi.

Appendices

Appendix A

1.1 Differential equations

Substituting Eq. (15) in Eq. (14), we have the ordinary differential equations with the boundary conditions at \({\mathcal{O}}\) (ε);

$$ \begin{aligned} &\left( {y + k} \right)^{2} \partial_{yy} g_{1} + \left( {y + k} \right)\partial_{y} g_{1} - \left( {\alpha^{2} \left( {y + k} \right)^{2} + 1} \right)g_{1} = 0, \hfill \\ &\left. {g_{1} } \right|_{y = 1} + \left. {\partial_{y} u^{\left( 0 \right)} } \right|_{y = 1} = - {\text{Kn}}\left[ {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} g_{1} } \right) + \partial_{y} \left( {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} u^{\left( 0 \right)} } \right)} \right)} \right]_{y = 1} , \hfill \\ &\left. {g_{1} } \right|_{y = - 1} + \cos \left( \varsigma \right)\left. {\partial_{y} u^{\left( 0 \right)} } \right|_{y = - 1} = {\text{Kn}}\left[ \left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} g_{1} } \right) \right.\\ &\quad \left.+ \cos \left( \varsigma \right)\partial_{y} \left( {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} u^{\left( 0 \right)} } \right)} \right) \right]_{y = - 1} , \hfill \\ \end{aligned} $$
(26)
$$ \left( {y + k} \right)^{2} \partial_{yy} g_{2} + \left( {y + k} \right)\partial_{y} g_{2} - \left( {\alpha^{2} \left( {y + k} \right)^{2} + 1} \right)g_{2} = 0, $$
$$ \left. {g_{2} } \right|_{y = 1} = - {\text{Kn}}\left[ {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} g_{1} } \right)} \right]_{y = 1} . $$
$$ \begin{aligned}\left. {g_{2} } \right|_{y = - 1} + \sin \left( \varsigma \right)\left. {\partial_{y} u^{\left( 0 \right)} } \right|_{y = - 1} & = {\text{Kn}}\left[ \left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} g_{2} } \right) \right. \\ &\quad \left. + \sin \left( \varsigma \right)\partial_{y} \left( {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} u^{\left( 0 \right)} } \right)} \right) \right]_{y = - 1} ,\end{aligned} $$
(27)

Substituting Eq. (19) in Eq. (18), we have the ordinary differential equation with the boundary conditions at \({\mathcal{O}}\) (\( \varepsilon^{2} \));

$$ \left( {y + k} \right)^{2} \partial_{yy} g_{3} + \left( {y + k} \right)\partial_{y} g_{3} - g_{3} = 0, $$
$$ \begin{aligned}& \left. {g_{3} } \right|_{y = 1} + \frac{1}{2}\left. {\partial_{y} g_{1} } \right|_{y = 1} + \frac{1}{4}\left. {\partial_{yy} u^{\left( 0 \right)} } \right|_{y = 1} \hfill \\& = - {\text{Kn}}\left[ {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} g_{3} } \right) + \frac{1}{2}\partial_{y} \left( {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} g_{1} } \right)} \right)} \right. \hfill \\ &\quad+ \frac{1}{4}\partial_{yy} \left( {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} u^{\left( 0 \right)} } \right)} \right) \hfill \\&\quad \left. { - \alpha^{2} \left( {\frac{1}{2}g_{1} + \frac{1}{4}\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} u^{\left( 0 \right)} } \right)} \right)} \right]_{y = 1} , \hfill \\ \end{aligned} $$
$$ \begin{aligned} & \left. {g_{3} } \right|_{y = - 1} + \frac{1}{2}\cos \left( \varsigma \right)\left. {\partial_{y} g_{1} } \right|_{y = - 1} + \frac{1}{2}\sin \left( \varsigma \right)\left. {\partial_{y} g_{2} } \right|_{y = - 1} + \frac{1}{4}\left. {\partial_{yy} u^{\left( 0 \right)} } \right|_{y = - 1} \hfill \\ & = {\text{Kn}}\left[ {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} g_{3} } \right) + \frac{1}{2}\cos \left( \varsigma \right)\partial_{y} \left( {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} g_{1} } \right)} \right)} \right. \hfill \\ & \quad + \frac{1}{2}\sin \left( \varsigma \right)\partial_{y} \left( {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} g_{2} } \right)} \right) + \frac{1}{4}\partial_{yy} \left( {\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} u^{\left( 0 \right)} } \right)} \right) \hfill \\ & \quad \left. { - \alpha^{2} \left( {\frac{1}{2}\cos \left( \varsigma \right)g_{1} + \frac{1}{2}\sin \left( \varsigma \right)g_{2} + \frac{1}{4}\left( {y + k} \right)\partial_{y} \left( {\left( {y + k} \right)^{ - 1} u^{\left( 0 \right)} } \right)} \right)} \right]_{y = - 1} . \hfill \\ \end{aligned} $$
(28)

Appendix B

2.1 Coefficients

The coefficients for the perturbation solutions are expressed as follows

$$ B_{0} = 8k^{2} \left( {{\text{Kn}} + 1} \right) + 8\left( {6{\text{Kn}} - 1} \right),\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad \qquad $$
(29)
$$ \begin{aligned} B_{1} & = 4\left( {k^{2} - 1} \right)^{2} \left( { - \left( {\left( {k - 2{\text{Kn}} + 1} \right)K_{1} \left( {\alpha \left( {k + 1} \right)} \right) - \alpha {\text{Kn}}K_{0} \left( {\alpha \left( {k + 1} \right)} \right)\left( {k + 1} \right)} \right)\left( {k + 2{\text{Kn}}} \right.} \right. \hfill \\ &\qquad \left. { - 1} \right)I_{1} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \qquad + \left( {k - 2{\text{Kn}} + 1} \right)\left( {\left( {k + 2{\text{Kn}} - 1} \right)K_{1} \left( {\alpha \left( {k - 1} \right)} \right)} \right. \hfill \\ & \qquad \left. { + \alpha {\text{Kn}}K_{0} \left( {\alpha \left( {k - 1} \right)} \right)\left( {k - 1} \right)} \right)I_{1} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \qquad + \alpha {\text{Kn}}\left( {I_{0} \left( {\alpha \left( {k + 1} \right)} \right)\left( {k + 1} \right)\left( {k + 2{\text{Kn}} - 1} \right)K_{1} \left( {\alpha \left( {k - 1} \right)} \right)} \right. \hfill \\ & \qquad + \left( {I_{0} \left( {\alpha \left( {k - 1} \right)} \right)\left( {k - 2{\text{Kn}} + 1} \right)K_{1} \left( {\alpha \left( {k + 1} \right)} \right)} \right. \hfill \\ & \qquad - \alpha {\text{Kn}}\left( {I_{0} \left( {\alpha \left( {k - 1} \right)} \right)K_{0} \left( {\alpha \left( {k + 1} \right)} \right) - I_{0} \left( {\alpha \left( {k + 1} \right)} \right)K_{0} \left( {\alpha \left( {k - 1} \right)} \right)} \right)\left( k \right. \hfill \\ & \qquad \left. {\left. {\left. {\left. { + 1} \right)} \right)\left( {k - 1} \right)} \right)} \right), \hfill \\ \end{aligned} $$
(30)
$$ \begin{aligned} B_{2}& = 4\left( {k - 1} \right)^{2} \left( { - \left( {\left( {k - 2{\text{Kn}} + 1} \right)K_{1} \left( {\alpha \left( {k + 1} \right)} \right) - \alpha {\text{Kn}}K_{0} \left( {\alpha \left( {k + 1} \right)} \right)\left( {k + 1} \right)} \right)\left( {k + 2{\text{Kn}}} \right.} \right. \hfill \\ & \qquad \left. { - 1} \right)I_{1} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \qquad + \left( {k - 2{\text{Kn}} + 1} \right)\left( {\left( {k + 2{\text{Kn}} - 1} \right)K_{1} \left( {\alpha \left( {k - 1} \right)} \right) + \alpha {\text{Kn}}K_{0} \left( {\alpha \left( {k - 1} \right)} \right)} \right.\left( k \right. \hfill \\ & \qquad \left. { - 1} \right)I_{1} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \qquad + \alpha {\text{Kn}}\left( {I_{0} \left( {\alpha \left( {k + 1} \right)} \right)\left( {k + 1} \right)\left( {k + 2{\text{Kn}} - 1} \right)K_{1} \left( {\alpha \left( {k - 1} \right)} \right) + \left( k \right.} \right. \hfill \\ & \qquad \left. { - 1} \right)\left( {I_{0} \left( {\alpha \left( {k - 1} \right)} \right)\left( {k - 2{\text{Kn}} + 1} \right)K_{1} \left( {\alpha \left( {k + 1} \right)} \right)} \right. \hfill \\ & \qquad - \alpha {\text{Kn}}\left( {\left( {I_{0} \left( {\alpha \left( {k - 1} \right)} \right)K_{0} \left( {\alpha \left( {k + 1} \right)} \right) - I_{0} \left( {\alpha \left( {k + 1} \right)} \right)K_{0} \left( {\alpha \left( {k - 1} \right)} \right)} \right)} \right.\left( k \right. \hfill \\ & \qquad \left. {\left. {\left. { + 1} \right)} \right)} \right), \hfill \\ \end{aligned} $$
(31)
$$ B_{3} = 16k\left( {k^{2} - 1} \right)^{2} \left( {\left( {{\text{Kn}} + 1} \right)k^{2} + 3{\text{Kn}} - 1} \right) $$
(32)
$$ \begin{aligned} A_{0} B_{0} & = - \left( {k - 1} \right)^{3} \left( {1 + k - 2{\text{Kn}}} \right)\ln \left( {k - 1} \right) \\ &\qquad + \left( {2{\text{Kn}} + k - 1} \right)\left( {\left( {k + 1} \right)^{3} \ln \left( {k + 1} \right) - 2k\left( {1 + k - 2{\text{Kn}}} \right)} \right), \end{aligned} $$
(33)
$$ A_{1} B_{0} = \left( {\left( {k^{2} - 1} \right)\ln \left( {k - 1} \right) - k^{2} \ln \left( {k + 1} \right) - 2k{\text{Kn}} + \ln \left( {k + 1} \right)} \right)\left( {k^{2} - 1} \right)^{2} , $$
(34)
$$ \begin{aligned} A_{2} B_{1} & = \left( {k - 1} \right)^{2} \left( {k + 2{\text{Kn}} - 1} \right)\left( {2k\left( {k + 1} \right)^{3} \ln \left( {k + 1} \right) + k^{4} + k^{3} \left( {3 - 4A_{0} } \right)} \right. \hfill \\ & \quad + 3k^{2} \left( {1 - 4A_{0} } \right) + k\left( {1 - 12A_{0} + 4A_{1} } \right) - 4A_{0} \hfill \\ & \quad \left. { - 4\left( {4{\text{Kn}} - 1} \right)A_{1} } \right)K_{1} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad - \cos \left( \varsigma \right)\left( {2k\left( {k - 1} \right)^{3} \ln \left( {k - 1} \right) + k^{4} - k^{3} \left( {3 + 4A_{0} } \right) + 3k^{2} \left( {1 + 4A_{0} } \right)} \right. \hfill \\ & \quad \left. { - k\left( {1 + 12A_{0} - 4A_{1} } \right) + 4A_{0} + 4\left( {4{\text{Kn}} - 1} \right)A_{1} } \right)\left( {k - 2{\text{Kn}}} \right. \hfill \\ & \quad \left. { + 1} \right)\left( {k + 1} \right)^{2} K_{1} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \quad + \left( {\left( {k - 1} \right)^{3} } \right.\left( {2k\left( {k + 1} \right)^{3} \ln \left( {k + 1} \right) + k^{4} + k^{3} \left( {3 - 4A_{0} } \right) + 3k^{2} \left( {1 - 4A_{0} } \right)} \right. \hfill \\ & \quad \left. { + k\left( {1 - 12A_{0} + 4A_{1} } \right) - 4A_{0} - 4\left( {4{\text{Kn}} - 1} \right)A_{1} } \right)K_{0} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad + \cos \left( \varsigma \right)\left( {2k\left( {k - 1} \right)^{3} \ln \left( {k - 1} \right) + k^{4} - k^{3} \left( {3 + 4A_{0} } \right) + 3k^{2} \left( {1 + 4A_{0} } \right)} \right. \hfill \\ & \quad \left. { - k\left( {1 + 12A_{0} - 4A_{1} } \right) + 4A_{0} + 4\left( {4{\text{Kn}} - 1} \right)A_{1} } \right)\left. {\left( {k + 1} \right)^{3} K_{0} \left( {\alpha \left( {k + 1} \right)} \right)} \right)\alpha {\text{Kn}}, \hfill \\ \end{aligned} $$
(35)
$$ \begin{aligned} A_{3} B_{1} & = - \left( {k - 1} \right)^{2} \left( {k + 2{\text{Kn}} - 1} \right)\left( {2k\left( {k + 1} \right)^{3} \ln \left( {k + 1} \right) + k^{4} + k^{3} \left( {3 - 4A_{0} } \right)} \right. \hfill \\ & \quad + 3k^{2} \left( {1 - 4A_{0} } \right) + k\left( {1 - 12A_{0} + 4A_{1} } \right) - 4A_{0} \hfill \\ & \quad \left. { - 4\left( {4{\text{Kn}} - 1} \right)A_{1} } \right)I_{1} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad + \cos \left( \varsigma \right)\left( {2k\left( {k - 1} \right)^{3} \ln \left( {k - 1} \right) + k^{4} - k^{3} \left( {3 + 4A_{0} } \right) + 3k^{2} \left( {1 + 4A_{0} } \right)} \right. \hfill \\ & \quad \left. { - k\left( {1 + 12A_{0} - 4A_{1} } \right) + 4A_{0} + 4\left( {4{\text{Kn}} - 1} \right)A_{1} } \right)\left( {k - 2{\text{Kn}}} \right. \hfill \\ & \quad \left. { + 1} \right)\left( {k + 1} \right)^{2} I_{1} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \quad + \alpha {\text{Kn}}\left( {\left( {k - 1} \right)^{3} } \right.\left( {2k\left( {k + 1} \right)^{3} \ln \left( {k + 1} \right) + k^{4} + k^{3} \left( {3 - 4A_{0} } \right)} \right. \hfill \\ & \quad + 3k^{2} \left( {1 - 4A_{0} } \right) + k\left( {1 - 12A_{0} + 4A_{1} } \right) - 4A_{0} \hfill \\ & \quad \left. { - 4\left( {4{\text{Kn}} - 1} \right)A_{1} } \right)I_{0} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad + \cos \left( \varsigma \right)\left( {2k\left( {k - 1} \right)^{3} \ln \left( {k - 1} \right) + k^{4} - k^{3} \left( {3 + 4A_{0} } \right) + 3k^{2} \left( {1 + 4A_{0} } \right)} \right. \hfill \\ & \quad \left. {\left. { - k\left( {1 + 12A_{0} - 4A_{1} } \right) + 4A_{0} + 4\left( {4{\text{Kn}} - 1} \right)A_{1} } \right)\left( {k + 1} \right)^{3} I_{0} \left( {\alpha \left( {k + 1} \right)} \right)} \right), \hfill \\ \end{aligned} $$
(36)
$$ \begin{aligned} & A_{4} B_{2} = \left( 2k\left( {k - 1} \right)^{3} { \ln }\left( {k - 1} \right) + k^{4} - k^{3} \left( {3 + 4A_{0} } \right) + 3k^{2} \left( {1 + 4A_{0} } \right) \right. \\ &\qquad\qquad \quad\left. - k\left( {1 + 12A_{0} - 4A_{1} } \right) + 16{\text{Kn}}A_{1} + 4\left( {A_{0} - A_{1} } \right) \right) \\ & \qquad\quad\qquad\left( { - \left( {k - 2{\text{Kn}} + 1} \right)K_{1} \left( {\alpha \left( {k + 1} \right)} \right) + \alpha {\text{Kn}}\left( {k + 1} \right)K_{0} \left( {\alpha \left( {k + 1} \right)} \right)} \right){ \sin }\left( \varsigma \right), \\ \end{aligned} $$
(37)
$$ \begin{aligned} & A_{5} B_{2} = \left( 2k\left( {k - 1} \right)^{3} { \ln }\left( {k - 1} \right) + k^{4} - k^{3} \left( {3 + 4A_{0} } \right) + 3k^{2} \left( {1 + 4A_{0} } \right) \right. \\ &\qquad\qquad \quad\left. - k\left( {1 + 12A_{0} - 4A_{1} } \right) + 16{\text{Kn}}A_{1} + 4\left( {A_{0} - A_{1} } \right) \right) \\ & \qquad\quad\qquad\left( {\left( {k - 2{\text{Kn}} + 1} \right)I_{1} \left( {\alpha \left( {k + 1} \right)} \right) + \alpha {\text{Kn}}\left( {k + 1} \right)I_{0} \left( {\alpha \left( {k + 1} \right)} \right)} \right){ \sin }\left( \varsigma \right), \\ \end{aligned} $$
(38)
$$ \begin{aligned} A_{6} B_{3} & = - 2\alpha \left( {k - 1} \right)^{3} \left( {k + 1} \right)^{5} \left( {k + 2{\text{Kn}} - 1} \right)\left( {A_{2} { \cos }\left( \varsigma \right) + A_{4} \sin \left( \varsigma \right)} \right)I_{0} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad + 2\alpha \left( {k - 1} \right)^{3} \left( {k + 1} \right)^{5} \left( {k + 2{\text{Kn}} - 1} \right)\left( {A_{3} { \cos }\left( \varsigma \right) + A_{5} \sin \left( \varsigma \right)} \right)K_{0} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad + 2\left( {k - 1} \right)^{2} \left( {k + 1} \right)^{5} \left( {k + 4{\text{Kn}} - 1} \right)\left( {A_{2} { \cos }\left( \varsigma \right) + A_{4} \sin \left( \varsigma \right)} \right)I_{1} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad + 2\left( {k - 1} \right)^{2} \left( {k + 1} \right)^{5} \left( {k + 4{\text{Kn}} - 1} \right)\left( {A_{3} { \cos }\left( \varsigma \right) + A_{5} \sin \left( \varsigma \right)} \right)K_{1} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad + 2\alpha A_{2} \left( {k + 1} \right)^{3} \left( {k - 1} \right)^{5} \left( {k - 2{\text{Kn}} + 1} \right)I_{0} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \quad - 2\alpha A_{3} \left( {k + 1} \right)^{3} \left( {k - 1} \right)^{5} \left( {k - 2{\text{Kn}} + 1} \right)K_{0} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \quad - 2A_{2} \left( {k + 1} \right)^{2} \left( {k - 1} \right)^{5} \left( {k - 4{\text{Kn}} + 1} \right)I_{1} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \quad - 2A_{3} \left( {k + 1} \right)^{2} \left( {k - 1} \right)^{5} \left( {k - 4{\text{Kn}} + 1} \right)K_{1} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \quad + k\left( {2\alpha^{2} k^{9} {\text{Kn}} + 2k^{7} \left( {1 - 2\alpha^{2} {\text{Kn}}} \right) + 4\alpha^{2} k^{6} {\text{Kn}}A_{1} - 6k^{5} \left( {1 - \alpha^{2} {\text{Kn}}} \right)} \right. \hfill \\ & \quad + 4k^{4} A_{1} \left( {\left( {\alpha^{2} - 6} \right){\text{Kn}} - 4} \right) + 2k^{3} \left( {3 - 2\alpha^{2} {\text{Kn}}} \right) - 20k^{2} {\text{Kn}}A_{1} \left( {\alpha^{2} + 12} \right) \hfill \\ & \quad \left. { - k\left( {2 - \alpha^{2} {\text{Kn}}} \right) + \left( {16 + 12\left( {\alpha^{2} - 10} \right){\text{Kn}}} \right)A_{1} } \right), \hfill \\ \end{aligned} $$
(39)
$$ \begin{aligned} A_{7} B_{3} & = 2\alpha \left( {k + 1} \right)^{2} \left( {k - 1} \right)^{3} \left( {k + 2{\text{Kn}} - 1} \right)\left( {k - 2{\text{Kn}} + 1} \right)\left( {A_{2} { \cos }\left( \varsigma \right) + A_{4} { \sin }\left( \varsigma \right)} \right)I_{0} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad - 2\alpha \left( {k + 1} \right)^{2} \left( {k - 1} \right)^{3} \left( {k + 2{\text{Kn}} - 1} \right)\left( {k - 2{\text{Kn}} + 1} \right)\left( {A_{3} { \cos }\left( \varsigma \right) + A_{5} \sin \left( \varsigma \right)} \right)K_{0} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad - 2\left( {k + 1} \right)^{2} \left( {k - 1} \right)^{2} \left( {k + 4{\text{Kn}} - 1} \right)\left( {k - 2{\text{Kn}} + 1} \right)\left( {A_{2} { \cos }\left( \varsigma \right) + A_{4} \sin \left( \varsigma \right)} \right)I_{1} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad - 2\left( {k + 1} \right)^{2} \left( {k - 1} \right)^{2} \left( {k + 4{\text{Kn}} - 1} \right)\left( {k - 2{\text{Kn}} + 1} \right)\left( {A_{3} { \cos }\left( \varsigma \right) + A_{5} \sin \left( \varsigma \right)} \right)K_{1} \left( {\alpha \left( {k - 1} \right)} \right) \hfill \\ & \quad - 2\alpha A_{2} \left( {k - 1} \right)^{2} \left( {k + 1} \right)^{3} \left( {k + 2{\text{Kn}} - 1} \right)\left( {k - 2{\text{Kn}} + 1} \right)I_{0} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \quad + 2\alpha A_{3} \left( {k - 1} \right)^{2} \left( {k + 1} \right)^{3} \left( {k + 2{\text{Kn}} - 1} \right)\left( {k - 2{\text{Kn}} + 1} \right)K_{0} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \quad + 2A_{2} \left( {k - 1} \right)^{2} \left( {k + 1} \right)^{2} \left( {k + 2{\text{Kn}} - 1} \right)\left( {k - 4{\text{Kn}} + 1} \right)I_{1} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \quad + 2A_{3} \left( {k - 1} \right)^{2} \left( {k + 1} \right)^{2} \left( {k + 2{\text{Kn}} - 1} \right)\left( {k - 4{\text{Kn}} + 1} \right)K_{1} \left( {\alpha \left( {k + 1} \right)} \right) \hfill \\ & \quad - k\left( {\alpha^{2} k^{7} {\text{Kn}} + k^{5} {\text{Kn}}\left( {\alpha^{2} \left( {4{\text{Kn}} - 3} \right) - 2} \right) + 4\alpha^{2} k^{4} {\text{Kn}}A_{1} } \right. \hfill \\ & \quad + k^{3} {\text{Kn}}\left( {4 + \alpha^{2} \left( {3 - 8{\text{Kn}}} \right)} \right) - 8k^{2} A_{1} \left( {1 + \left( {\alpha^{2} + 2} \right){\text{Kn}}} \right) \hfill \\ & \quad \left. { + k{\text{Kn}}\left( {\alpha^{2} \left( {4{\text{Kn}} - 1} \right) - 2} \right) + 96{\text{Kn}}^{2} A_{1} + 4{\text{Kn}}\left( {\alpha^{2} - 20} \right)A_{1} + 8A_{1} } \right). \hfill \\ \end{aligned} $$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okechi, N.F., Asghar, S. Rough curved microchannel slip flow. Eur. Phys. J. Plus 135, 685 (2020). https://doi.org/10.1140/epjp/s13360-020-00643-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00643-x

Navigation