Skip to main content
Log in

From generalized Fourier transforms to spectral curves for the Manakov hierarchy. II. Spectral curves for the Manakov hierarchy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The hierarchies of multicomponent models of Manakov type are briefly outlined. Many of them have important applications n nonlinear optics. Next, we develop a method for calculating the spectral curves for the multiphase solutions of these equations. We discuss also other multicomponent generalization of Manakov system to which our method can be extended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)

    MathSciNet  MATH  Google Scholar 

  2. M. Abramowitz, I.A. Stegun (eds.), Handbook of Mathematical Functions with Formulae, Graphs and Mathematical Tables (Willey, New York, 1972)

    MATH  Google Scholar 

  3. N.I. Akhiezer, Elements of the Theory of Elliptic Functions (American Mathematical Society, Providence, 1990). Translated from the second Russian edition by H. H. McFaden

  4. G.L. Alfimov, A.R. Its, N.E. Kulagin, Modulation instability of solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 84(2), 787–793 (1990)

    MATH  Google Scholar 

  5. A. Arnaudon, D.D. Holm, R.I. Ivanov, \(G\)-strands on symmetric spaces. Proc. R. Soc. 473, 20160795 (2017). https://doi.org/10.1098/rspa.2016.0795

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. C. Athorne, A. Fordy, Integrable equations in \(2+1\) dimensions associated with symmetric and homogeneous spaces. J. Math. Phys. 28, 2018–2024 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  7. E.D. Belokolos, A.I. Bobenko, V.Z. Enol’skii, A.R. Its, V.B. Matveev, Algebro-Geometrical Approach to Nonlinear Evolution Equations. Series in Nonlinear Dynamics (Springer, Berlin, 1994)

    Google Scholar 

  8. E.D. Belokolos, A.I. Bobenko, V.B. Matveev, V.Z. Enol’skii, Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations. Rus. Math. Surv. 41(2), 1–49 (1986)

    MATH  Google Scholar 

  9. E.D. Belokolos, V.Z. Enol’skii, Generalized Lamb ansatz. Theor. Math. Phys. 53, 1120–1127 (1982)

    MathSciNet  MATH  Google Scholar 

  10. V.M. Buchstaber, V.Z. Enol’skii, Abelian Bloch solutions of the two-dimensional Schrödinger equation. Rus. Math. Surv. 50(1), 195–197 (1995)

    Google Scholar 

  11. P.L. Christiansen, J.C. Eilbeck, V.Z. Enol’skii, N.A. Kostov, Quasi-periodic and periodic solutions for coupled nonlinear Schrödinger equations of Manakov type. Proc. R. Soc. Lond. Ser. A 456, 2263–2281 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  12. B.A. Dubrovin, Inverse problem for periodic finite-zoned potentials in the theory of scattering. Funct. Anal. Appl. 9(1), 61–62 (1975)

    MATH  Google Scholar 

  13. B.A. Dubrovin, Periodic problems for the Korteweg–de Vries equation in the class of finite band potentials. Funct. Anal. Appl. 9(3), 215–223 (1975)

    MATH  Google Scholar 

  14. B.A. Dubrovin, Completely integrable Hamiltonian systems associated with matrix operators and Abelian varieties. Funct. Anal. Appl. 11(4), 265–277 (1977)

    MathSciNet  MATH  Google Scholar 

  15. B.A. Dubrovin, Theta functions and non-linear equations. Russ. Math. Surv. 36(2), 11–92 (1981)

    MATH  Google Scholar 

  16. B.A. Dubrovin, Matrix finite-zone operators. J. Sovi. Math. 28(1), 20–50 (1985)

    MATH  Google Scholar 

  17. B.A. Dubrovin, I.M. Krichever, S.P. Novikov, The Schrödinger equation in a periodic field and Riemann surfaces. Sov. Math. Dokl. 17, 947–951 (1976)

    MATH  Google Scholar 

  18. B.A. Dubrovin, V.B. Matveev, S.P. Novikov, Nonlinear equations of Korteweg–de Vries type, finite-band linear operators and Abelian varietes. Russ. Math. Surv. 31(1), 59–146 (1976)

    MATH  Google Scholar 

  19. B.A. Dubrovin, S.P. Novikov, A periodicity problem for the Korteweg–de Vries and Sturm–Liouville equations. Their connection with algebraic geometry. Sov. Math. Dokl. 15, 1597–1601 (1974)

    MATH  Google Scholar 

  20. J.C. Eilbeck, V.Z. Enol’skii, N.A. Kostov, Quasiperiodic and periodic solutions for vector nonlinear Schrödinger equations. J. Math. Phys. 41(12), 8236 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  21. J.N. Elgin, V.Z. Enol’skii, A.R. Its, Effective integration of the nonlinear vector Schrödinger equation. Physica D 225, 127–152 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  22. A.P. Fordy, P.P. Kulish, Nonlinear Schrödinger equations and simple Lie algebras. Commun. Math. Phys. 89, 427–443 (1983)

    ADS  MATH  Google Scholar 

  23. S. Gaiarin, A.M. Perego, E.P. da Silva, F. Da Ros, D. Zibar, Experimental demonstration of dual polarization nonlinear frequency division multiplexed optical transmission system. Preprint, arXiv:1708.00350 (2017)

  24. S. Gaiarin, A.M. Perego, E.P. da Silva, F. Da Ros, D. Zibar, Dual polarization nonlinear Fourier transform-based optical communication system. Preprint, arXiv:1802.10023 (2018)

  25. V.S. Gerdjikov, Generalized Fourier transforms for the soliton equations. Gauge covariant formulation. Inverse Probl. 2(1), 51–74 (1986)

    ADS  Google Scholar 

  26. V.S. Gerdjikov, Complete integrability, Gauge equivalence and Lax representations of the inhomogeneous nonlinear evolution equations. Theor. Math. Phys. 92, 374–386 (1992)

    MathSciNet  Google Scholar 

  27. V.S. Gerdjikov, Algebraic and analytic aspects of soliton type equations. Contemp. Math. 301, 35–68 (2002)

    MathSciNet  MATH  Google Scholar 

  28. V.S. Gerdjikov, Basic aspects of soliton theory, in Geometry, Integrability and Quantization, ed. by I.M. Mladenov, A.C. Hirshfeld (Softex, Sofia, 2005), pp. 78–125

    Google Scholar 

  29. V.S. Gerdjikov, E.K. Khristov, On the evolution equations solvable with the inverse scattering problem. I. The spectral theory. Bulg. J. Phys. 7(1), 28–41 (1980)

    Google Scholar 

  30. V.S. Gerdjikov, E.K. Khristov, On the evolution equations solvable with the inverse scattering problem. II. Hamiltonian structures and Bäcklund transformations. Bulg. J. Phys 7(2), 119–133 (1980)

    Google Scholar 

  31. V.S. Gerdzhikov, M.I. Ivanov, P.P. Kulish, Quadratic bundle and nonlinear equations. Theor. Math. Phys. 44(3), 784–795 (1980)

    MATH  Google Scholar 

  32. J.V. Goossens, M. Yousefi, Y. Jaouën, H. Haffermann, Polarization-division multiplexing based on the nonlinear Fourier transform. Preprint, arXiv:1707.08589 (2017)

  33. J.W. Goossens, H. Haffermann, Y. Jaouën, Data transmission based on exact inverse periodic nonlinear Fourier transform, part I: theory. Preprint, arXiv:1911.12614 (2019)

  34. J.W. Goossens, H. Haffermann, Y. Jaouën, Data transmission based on exact inverse periodic nonlinear Fourier transform, part II: waveform design and experiment. Preprint, arXiv:1911.12615 (2019)

  35. A.R. Its, V.Z. Enol’skii, Dynamics of the Calogero–Moser system and the reduction of hyperelliptic integrals to elliptic integrals. Funct. Anal. Appl. 20, 62–64 (1986)

    MathSciNet  MATH  Google Scholar 

  36. A.R. Its, V.P. Kotlyarov, On a class of solutions of the nonlinear Schrödinger equation. Dokl. Akad. Nauk Ukrain. SSR Ser. A 11, 965–968 (1976). (Russian)

    MATH  Google Scholar 

  37. A.R. Its, A.V. Rybin, M.A. Sall’, Exact integration of nonlinear Schrödinger equation. Theor. Math. Phys. 74(1), 20–32 (1988)

    MATH  Google Scholar 

  38. C. Kalla, Breathers and solitons of generalized nonlinear Schrödinger equation as degenerations of algebro-geometric solutions. J. Phys. A 44, 335,210 (2011)

    Google Scholar 

  39. D.J. Kaup, Closure of the squared Zakharov–Shabat eigenstates. J. Math. Annal. Appl. 54(3), 849–864 (1976)

    MathSciNet  MATH  Google Scholar 

  40. V.P. Kotlyarov, Periodic problem for the nonlinear Schrödinger equation. Preprint, arXiv:1401.4445 (2014)

  41. S.T. Le, J.E.K.T.S. Prilepsky, Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers. Opt. Express 22, 26,720–26,741 (2014)

    Google Scholar 

  42. S.V. Manakov, On the theory of two-dimensional stationary self-focussing of electromagnetic waves. Sov. Phys. JETP 38(2), 248–253 (1974)

    ADS  Google Scholar 

  43. V.B. Matveev, A.O. Smirnov, Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: a unified approach. Theor. Math. Phys. 186(2), 156–182 (2016)

    MathSciNet  MATH  Google Scholar 

  44. V.B. Matveev, A.O. Smirnov, AKNS hierarchy, MRW solutions, \(P_n\) breathers, and beyond. J. Math. Phys. 59(9), 091,419 (2018)

    Google Scholar 

  45. V.B. Matveev, A.O. Smirnov, Two-phase periodic solutions to the AKNS hierarchy equations. J. Math. Sci. 242(5), 722–741 (2019)

    MathSciNet  MATH  Google Scholar 

  46. A.O. Smirnov, V.B. Matveev, Y.A. Gusman, N.V. Landa, Spectral curves for the rogue waves. Preprint, arXiv:1712.09309 (2017)

  47. O.H. Warren, J.N. Elgin, The vector nonlinear Schrödinger hierarchy. Physica D 228, 166–171 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  48. T. Woodcock, O.H. Warren, J.N. Elgin, Genus two finite gap solutions to the vector nonlinear Schrödinger equation. J. Phys. A 40, F355–F361 (2007)

    ADS  MATH  Google Scholar 

  49. M.I. Yousefi, F.R. Kschischang, Information transmission using the nonlinear Fourier transform, part I: mathematical tools. IEEE Trans. Inf. Theory 60, 4312–4328 (2014)

    MathSciNet  MATH  Google Scholar 

  50. M.I. Yousefi, F.R. Kschischang, Information transmission using the nonlinear Fourier transform, part II: numerical methods. IEEE Trans. Inf. Theory 60, 4329–4345 (2014)

    MathSciNet  MATH  Google Scholar 

  51. M.I. Yousefi, F.R. Kschischang, Information transmission using the nonlinear Fourier transform, part III: spectrum modulation. IEEE Trans. Inf. Theory 60, 4346–4369 (2014)

    MathSciNet  MATH  Google Scholar 

  52. V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method (Plenum, New York, 1984)

    MATH  Google Scholar 

  53. V.E. Zakharov, A.B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Zh. Eksp. Teor. Fiz. 61, 118–134 (1971)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Bulgarian Science Foundation (Grant NTS-Russia 02/101 from 23.10.2017) and by the RFBR (Grant 18-51-18007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Smirnov.

Additional information

In memory of Boris Dubrovin and Viktor Enol’skii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.O., Gerdjikov, V.S. & Matveev, V.B. From generalized Fourier transforms to spectral curves for the Manakov hierarchy. II. Spectral curves for the Manakov hierarchy. Eur. Phys. J. Plus 135, 561 (2020). https://doi.org/10.1140/epjp/s13360-020-00588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00588-1

Navigation