Skip to main content
Log in

Entropy-optimized radiating water/FCNTs nanofluid boundary-layer flow with convective condition

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

An Erratum to this article was published on 11 August 2020

This article has been updated

Abstract

The inherent irreversibility in boundary-layer flow of a radiating water/functionalized carbon nanotubes nanofluid over a convectively heated moving wedge and a horizontal/vertical plates is examined. The water-based nanofluid contains two types of carbon nanotubes, namely SWCNTs and MWCNTs. Using a suitable similarity transformation, the model partial differential equations are reduced to ordinary differential equations along with the corresponding boundary conditions. Solutions are obtained for the nanofluid velocity and temperature profiles analytically via optimal homotopy asymptotic method and numerically via shooting method with Runge–Kutta–Fehlberg integration scheme. Entropy generation analysis is conducted based on second law of thermodynamic, and the Bejan number is determined. Results are presented in graphical and tabular forms in order to scrutinize the effects of various geometrical, dynamical and thermophysical parameters on velocity, temperature, skin friction, Nusselt number, entropy generation rate and Bejan number. Generally, it is found that the entropy production can be minimized by reducing the convection through boundaries, moving the obstacle at the same velocity and direction as the flow (λoptimal = 1) and controlling the penetration of viscous dissipation, while increasing nanoparticles rate and thermal radiation has influence to increase the entropy generation. In addition, horizontal plate corresponding to the wedge angle value m = 0 is the optimum geometry to reduce entropy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

  • 11 August 2020

    After publication of the article, mistakes were found.

Abbreviations

FCNT:

Functionalized carbon nanotube

SWCNT:

Single-wall carbon nanotube

MWCNT:

Multi-wall carbon nanotube

RKF:

Runge–Kutta–Fehlberg method

OHAM:

Optimal homotopy asymptotic method

HC:

Heat convection

TR:

Thermal radiation

HTI:

Heat transfer irreversibility

FFI:

Fluid friction irreversibility

References

  1. V.M. Falkner, S.W. Skan, Some approximate solutions of the boundary-layer equations. Philos. Mag. 12, 865–896 (1931)

    Article  Google Scholar 

  2. K.A. Yih, Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux. Acta Mech. 128(3/4), 173–181 (1998)

    Article  Google Scholar 

  3. M.K. Nayak, A.K. Hakeem, O.D. Makinde, Time varying chemically reactive magneto-hydrodynamic non-linear Falkner–Skan flow over a permeable stretching/shrinking wedge: Buongiorno model. J. Nanofluids 8(3), 467–476 (2019)

    Article  Google Scholar 

  4. F. Mabood, S.M. Ibrahim, M.M. Rashidi, M.S. Shadloo, G. Lorenzini, Non-uniform heat source/sink and Soret effects on MHD non-Darcian convective flow past a stretching sheet in a micropolar fluid with radiation. Int. J. Heat. Mass Transf. 93, 674–682 (2016)

    Article  Google Scholar 

  5. B. Mahanthesh, O.D. Makinde, B.J. Gireesha, K.L. Krupalakshmi, I.L. Animasaun, Two-phase flow of dusty Casson fluid with Cattaneo–Christov heat flux and heat source past a cone, wedge and plate. Defect Diffus. Forum 387, 625–639 (2018)

    Article  Google Scholar 

  6. A.V. Kuznetsov, D.A. Nield, Boundary layer treatment of forced convection over a wedge with an attached porous substrate. J. Porous Media 9(7), 683–694 (2006)

    Article  Google Scholar 

  7. B.L. Kuo, Heat transfer analysis for the Falkner–Skan wedge flow by the differential transformation method. Int. J. Heat. Mass Transf. 48(23/24), 5036–5046 (2005)

    Article  Google Scholar 

  8. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Proceedings of ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD, vol. 66 (1995), pp. 99–105

  9. R. Haq, I. Rashid, Z.H. Khan, Effects of aligned magnetic field and CNTs in two different base fluids over a moving slip surface. J. Mol. Liq. 243, 682–688 (2017)

    Article  Google Scholar 

  10. N.A. Che Sidik, M.N.A.W.M. Yazid, S. Samion, A review on the use of carbon nanotubes nanofluid for energy harvesting system. Int. J. Heat. Mass Transf. 111, 782–794 (2017)

    Article  Google Scholar 

  11. Y.H. Hung, H.J. Gu, Multiwalled carbon nanotube nanofluids used for heat dissipation in hybrid green energy systems. J. Nanomater. (2014). https://doi.org/10.1155/2014/196074

    Article  Google Scholar 

  12. N.A. Yacob, A. Ishak, I. Pop, Falkner–Skan problem for a static or moving wedge in nanofluids. Int. J. Therm. Sci. 50, 133–139 (2011)

    Article  Google Scholar 

  13. M. Khan, M. Azam, On unsteady Falkner–Skan flow of MHD Carreau nanofluid past a static/moving wedge with convective surface condition. J. Mol. Liq. 230, 48–58 (2017)

    Article  Google Scholar 

  14. M. Hashim, A. Khan, Hamid, Numerical investigation on time-dependent flow of Williamson nanofluid along with heat and mass transfer characteristics past a wedge geometry. Int. J. Heat Mass Transf. 118, 480–491 (2018)

    Article  Google Scholar 

  15. M. Khan, A. Ahmed, J. Ahmed, Transient flow of magnetized Maxwell nanofluid: Buongiorno model perspective of Cattaneo–Christov theory. Appl. Math. Mech. 41(4), 655–666 (2020)

    Article  MathSciNet  Google Scholar 

  16. M. Azam, T. Xu, A. Shakoor, M. Khan, Effects of Arrhenius activation energy in development of covalent bonding in axisymmetric flow of radiative-cross nanofluid. Int. Commun. Heat Mass Transf. 113, Article No. 104547 (2020)

  17. A. Hashim, M. Hamid, Khan, Multiple solutions for MHD transient flow of Williamson nanofluids with convective heat transport. J. Taiwan Inst. Chem. Eng. 103, 126–137 (2019)

    Article  Google Scholar 

  18. A. Hamid, A. Hashim, A. Hafeez, M. Khan, A.S. Alshomrami, M. Alghamdi, Heat transport features of magnetic water–graphene oxide nanofluid flow with thermal radiation: stability test. Eur. J. Mech. B Fluids 76, 434–441 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Bejan, Entropy Generation Minimization (CRC Press, Boca Raton, 1996)

    MATH  Google Scholar 

  20. O.D. Makinde, W.A. Khan, A. Aziz, On inherent irreversibility in Sakiadis flow of nanofluids. Int. J. Exergy 2, 159–174 (2013)

    Article  Google Scholar 

  21. F.A. Soomro, R.U. Haq, Z.H. Khan, Numerical study of entropy generation in MHD water-based carbon nanotubes along an inclined permeable surface. Eur. Phys. J. Plus 132(10), 412 (2017)

    Article  Google Scholar 

  22. J. Qing, M.M. Bhatti, M.A. Abbas, M.M. Rashidi, M.E. Ali, Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface. Entropy 18(4), 123 (2016)

    Article  ADS  Google Scholar 

  23. M. Ishaq, A. Gohar, Z. Shah, S. Islam, S. Muhammad, Entropy generation on nanofluid thin film flow of Eyring–Powell fluid with thermal radiation and MHD effect on an unsteady porous stretching sheet. Entropy 20(6), 412 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. M.I. Afridi, M. Qasim, N.A. Khan, O.D. Makinde, Minimization of entropy generation in MHD mixed convection flow with energy dissipation and Joule heating: utilization of Sparrow–Quack–Boerner local non-similarity method. Defect Diffus. Forum 387, 63–77 (2018)

    Article  Google Scholar 

  25. M.I. Afridi, M. Qasim, O.D. Makinde, Second law analysis of boundary layer flow with variable fluid properties. ASME J. Heat Transf. 10, 104505 (2017)

    Article  Google Scholar 

  26. O.D. Makinde, A.S. Eegunjobi, Entropy analysis in MHD flow with heat source and thermal radiation past a stretching sheet in a porous medium. Defect Diffus. Forum 387, 364–372 (2018)

    Article  Google Scholar 

  27. A. Malvandi, D.D. Ganji, F. Hedayati, E. Yousefi Rad, An analytical study on entropy generation of nanofluids over a flat plate. Alex. Eng. J. 52(4), 595–604 (2013)

    Article  Google Scholar 

  28. F. Hedayati, A. Malvandi, D.D. Ganji, Second-law analysis of fluid flow over an isothermal moving wedge. Alex. Eng. J. 53(1), 1–9 (2014)

    Article  Google Scholar 

  29. H. Berrehal, Thermodynamics second law analysis for MHD boundary layer flow and heat transfer caused by a moving wedge. J. Mech. Sci. Technol. 33(6), 2949–2955 (2019)

    Article  Google Scholar 

  30. A. Bejan, A study of entropy generation in fundamental convective heat transfer. J. Heat Transf. 101, 718–725 (1979)

    Article  Google Scholar 

  31. A.S. Butt, S. Munawar, A. Ali, A. Mehmood, Entropy generation in the Blasius flow under thermal radiation. Phys. Scr. 85(3), 035008 (2012)

    Article  ADS  Google Scholar 

  32. R.D. Ene, V. Marinca, Approximate solutions for steady boundary layer MHD viscous flow and radiative heat transfer over an exponentially porous stretching sheet. Appl. Math. Comput. 269, 389–401 (2015)

    MathSciNet  MATH  Google Scholar 

  33. H. Berrehal, A. Maougal, Entropy generation analysis for multi-walled carbon nanotube (MWCNT) suspended nanofluid flow over wedge with thermal radiation and convective boundary condition. J. Mech. Sci. Technol. 33(1), 459–464 (2019)

    Article  Google Scholar 

  34. H. Berrehal, A. Maougal, T. Hayat, A. Alsaedi, On the analytic solution of magneto-hydrodynamic (MHD) flow by a moving wedge in porous medium. Defect Diffus. Forum 389, 128–137 (2018)

    Article  Google Scholar 

  35. T. Watanabe, Thermal boundary layers over a wedge with uniform suction or injection in forced flow. Acta Mech. 83, 119–126 (1990)

    Article  Google Scholar 

  36. K.A. Yih, Uniform suction/blowing effect on forced convection about a wedge: uniform heat flux. Acta Mech. 128, 173–181 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamza Berrehal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrehal, H., Mabood, F. & Makinde, O.D. Entropy-optimized radiating water/FCNTs nanofluid boundary-layer flow with convective condition. Eur. Phys. J. Plus 135, 535 (2020). https://doi.org/10.1140/epjp/s13360-020-00536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00536-z

Navigation