Skip to main content
Log in

Collapses and revivals of entanglement in phase space in an optomechanical cavity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We analyse the dynamics of an optomechanical cavity considering two modes of the electromagnetic field and a mechanical resonator. As a result of this interaction, the initial non-entangled state evolves into a final entangled state. In this work, we use the \(Q(\alpha )\) function to observe the behavior of the system in the phase space, finding that such entanglement is a function of time showing collapses and revivals. To carry out this analysis, we use the generalization of the single-party \(Q(\alpha )\) function towards three-party systems \(Q(\alpha ,\mu ,\nu )\) and we ascertain that the entanglement perfectly maps into the \(Q(\alpha ,\mu ,\nu )\) function because it becomes non-separable too. To prove that the Q function accurately certifies entanglement, we compare its behaviour with the plots of the van Loock inequalities. Additionally, as the optomechanical systems were proposed to carry out quantum information tasks, we investigate the kind of phase gate that is produced when we keep the Kerr term that arises in the evolution operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. S. Bell, Physics 1, 195 (1964)

    Google Scholar 

  2. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, Cambridge, 2010)

    MATH  Google Scholar 

  3. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    ADS  Google Scholar 

  4. V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61, 052306 (2000)

    ADS  Google Scholar 

  5. C.K. Law, Phys. Rev. A 51, 2537 (1995)

    ADS  Google Scholar 

  6. S. Mancini, V. Giovanneti, D. Vitali, P. Tombesi, Phys. Rev. Lett. 88, 120401 (2002)

    ADS  Google Scholar 

  7. K. Stannigel, P. Komar, S.J.M. Habraken, S.D. Bennett, M.D. Lukin, P. Zoller, P. Rabl, Phys. Rev. Lett. 109, 013603 (2012)

    ADS  Google Scholar 

  8. W. Bowen, G.J. Milburn, Quantum Optomechanics (CRC Press, London, 2016)

    MATH  Google Scholar 

  9. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014)

    ADS  Google Scholar 

  10. D. Kleckner, I. Pikovski, E. Jeffrey, L. Ament, E. Eliel, J. van den Brink, D. Bouwmeester, New J. Phys. 10, 095020 (2008)

    ADS  Google Scholar 

  11. W. Ge, M.S. Zubairy, Phys. Scr. 90, 074015 (2015)

    ADS  Google Scholar 

  12. E. Sete, H. Eleuch, R. Ooi, J. Opt. Soc. Am. B 31, 2821 (2014)

    ADS  Google Scholar 

  13. U. Akram, W.P. Bowen, G.J. Milburn, New J. Phys. 15, 093007 (2013)

    ADS  Google Scholar 

  14. S. Bose, K. Jacobs, P.L. Knight, Phys. Rev. A 56, 4175 (1997)

    ADS  Google Scholar 

  15. W. Ge, M. Al-Amri, H. Nha, M.S. Zubairy, Phys. Rev. A 88, 052301 (2013)

    ADS  Google Scholar 

  16. D. Vitali, S. Gigan, A. Ferreira, H.R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, M. Aspelmeyer, Phys. Rev. Lett. 98, 030405 (2007)

    ADS  Google Scholar 

  17. T.J. Kippenberg, K.J. Vahala, Science 321, 1172 (2008)

    ADS  Google Scholar 

  18. A.D. O’Connell, M. Hofheinz, M. Ansmann, Radoslaw C. Bialczak, M. Lenander, Erik Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, John M. Martinis, A.N. Cleland, Nature 464, 697–703 (2010)

    ADS  Google Scholar 

  19. Jasper Chan, T.P. Mayer Alegre, Amir H. Safavi-Naeini, Jeff T. Hill, Alex Krause, Simon Gröblacher, Markus Aspelmeyer, Oskar Painter, Nature 478, 89–92 (2011)

    ADS  Google Scholar 

  20. J.D. Teufel, T. Donner, Dale Li, J.W. Harlow, M.S. Allman, K. Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert, R.W. Simmonds, Nature 475, 359–363 (2011)

    ADS  Google Scholar 

  21. T.A. Palomaki, J.D. Teufel, R.W. Simmonds, K.W. Lehnert, Science 342(6159), 710–713 (2013)

    ADS  Google Scholar 

  22. R. Riedinger, S. Hong, R.A. Norte, J.A. Slater, J. Shang, A.G. Krause, V. Anant, M. Aspelmeyer, S. Gröblacher, Nature 530, 313–316 (2016)

    ADS  Google Scholar 

  23. T.P. Purdy, K.E. Grutter, K. Srinivasan, J.M. Taylor, Science 356(6344), 1265–1268 (2017)

    ADS  MathSciNet  Google Scholar 

  24. C.F. Ockeloen-Korppi, E. Damskägg, J.-M. Pirkkalainen, M. Asjad, A.A. Clerk, F. Massel, M.J. Woolley, M.A. Sillanpää, Nature 556, 478–482 (2018)

    ADS  Google Scholar 

  25. X. Hao, S.I. LiuGang, L.V. Xin You, Y. XiaoXue, W. Ying, Sci. China Phys. Mech. Astron. 58, 050302 (2015)

    Google Scholar 

  26. Yu-long Liu, C. Wnag, Jing Zhang, Yu-Xi Liu, Chin. Phys. B 27, 024204 (2018)

    ADS  Google Scholar 

  27. M. Asjad, P. Tombesi, D. Vitalli, Opt. Express 23, 7786 (2015)

    ADS  Google Scholar 

  28. P. van Lock, A. Furusawa, Phys. Rev. A 67, 152315 (2003)

    Google Scholar 

  29. L.-M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 84, 2722 (2000)

    ADS  Google Scholar 

  30. P.C.G. Quijas, L.M.A. Aguilar, Phys. Scr. 75, 185 (2007)

    ADS  MathSciNet  Google Scholar 

  31. W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000)

    ADS  MathSciNet  Google Scholar 

  32. G. Giedke, B. Kraus, M. Lewenstein, J.I. Cirac, Phys. Rev. A 64, 052303 (2001)

    ADS  Google Scholar 

  33. L.-M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Phys. Rev. A 73, 032345 (2006)

    Google Scholar 

  34. M.K. Olsen, J.F. Corney, Opt. Commun. 378, 49 (2016)

    ADS  Google Scholar 

  35. K. Kreis, P. van Loock, Phys. Rev. A 85, 032307 (2012)

    ADS  Google Scholar 

  36. R.J. Glauber, Phys. Rev. 130, 2529 (1963)

    ADS  MathSciNet  Google Scholar 

  37. R.J. Glauber, Phys. Rev. 131, 2766 (1963)

    ADS  MathSciNet  Google Scholar 

  38. R.J. Glauber, Phys. Rev. Lett. 10, 84 (1963)

    ADS  MathSciNet  Google Scholar 

  39. E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963)

    ADS  MathSciNet  Google Scholar 

  40. M. Orzag, Quantum Optics, Chap. 4 (Springer, New York, 2008), p. 31

    Google Scholar 

  41. F.A.M. de Oliveira, M.S. Kim, P.L. Knight, V. Buek, Phys. Rev. A 41, 2645 (1990)

    ADS  Google Scholar 

  42. P.C. García-Quijas, L.M. Arévalo Aguilar, Quantum Inf. Comput. 10(3&4), 189 (2010)

    Google Scholar 

  43. S. Aldana, C. Bruder, A. Nunnenkamp, Phys. Rev. A 88, 043826 (2013)

    ADS  Google Scholar 

  44. K. Banaszek, K. Wdkiewicz, Acta Phys. Slovaca 49, 491 (1999)

    Google Scholar 

  45. S. Mancini, V.I. Man’ko, P. Tombesi, Phys. Rev. A 55, 3042 (1997)

    ADS  Google Scholar 

  46. W.H. Louisell, in Quantum Statistical Properties of Radiation, Chap. 3, ed. by S.S. Ballard (Wiley, New York, 1990), pp. 136–137

Download references

Acknowledgements

The research carried out in this work has been not supported by any organization or agency. One of us, J. Rodríguez-Lima, thanks the scholarship support provided by CONACYT. Finally, we thank Alba Julita Chiyopa Robledo for helping us with the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Arévalo Aguilar.

Appendix A: Factorization of time evolution operator

Appendix A: Factorization of time evolution operator

In this appendix the time evolution operator will be factorized, but before that it is convenient to write the Hamiltonian in equation (4) as follows:

$$\begin{aligned} {\hat{H}}=\xi ({\hat{A}}+{\hat{B}}+{\hat{C}}+{\hat{D}}), \end{aligned}$$
(A1)

where we apply the following definitions:

$$\begin{aligned} \xi= & {} -\frac{it}{\hbar }, \end{aligned}$$
(A2)
$$\begin{aligned} {\hat{A}}= & {} \hbar \omega _1{\hat{a}}^{\dagger }_1{\hat{a}}_1, \end{aligned}$$
(A3)
$$\begin{aligned} {\hat{B}}= & {} \hbar \omega _2{\hat{a}}^{\dagger }_2{\hat{a}}_2, \end{aligned}$$
(A4)
$$\begin{aligned} {\hat{C}}= & {} \hbar \omega _m{\hat{b}}^{\dagger }{\hat{b}}, \end{aligned}$$
(A5)
$$\begin{aligned} {\hat{D}}= & {} \hbar (g_1 {\hat{a}}_1^{\dagger }{\hat{a}}_1+g_2 {\hat{a}}_2^{\dagger }{\hat{a}}_2)({\hat{b}}+{\hat{b}}^{\dagger }). \end{aligned}$$
(A6)

From the above definitions, the following commutation relations are deduced:

$$\begin{aligned} {[}{\hat{A}},{\hat{B}}]=[{\hat{A}},{\hat{C}}]=[{\hat{A}},{\hat{D}}]=[{\hat{B}},{\hat{C}}]=[{\hat{B}},{\hat{D}}]=0, \end{aligned}$$
(A7)

and the time evolution operator can be written in a more simple way:

$$\begin{aligned} {\hat{U}}(t)=e^{\xi ({\hat{A}}+{\hat{B}}+{\hat{C}}+{\hat{D}})}. \end{aligned}$$
(A8)

Now, by using the commutation relations and the well-known Baker–Cambell–Hausdorff formula we get the following expression:

$$\begin{aligned} e^{{\hat{A}}+{\hat{B}}}=e^{-\frac{1}{2}[{\hat{A}},{\hat{B}}]}e^{{\hat{A}}}e^{{\hat{B}}}, \end{aligned}$$
(A9)

it is also possible to write the temporal evolution operator in the following way:

$$\begin{aligned} {\hat{U}}(t)=e^{\xi {\hat{A}}}e^{\xi {\hat{B}}}e^{\xi ({\hat{C}}+{\hat{D}})}. \end{aligned}$$
(A10)

The last factor in (A10) involves the operators \({\hat{C}}\) and \({\hat{D}}\), then it is necessary to find their commutation relation, which are given by the following expression:

$$\begin{aligned}{}[{\hat{C}},{\hat{D}}]=\hbar \omega _{m}{\hat{k}}({\hat{b}}^{\dagger }-{\hat{b}})={\hat{E}}, \end{aligned}$$
(A11)

where for convenience of this calculation the following operator is defined \({\hat{k}}=k_1{\hat{A}}+k_2{\hat{B}}\) and \(d_i=g_i/\omega _i\) is a constant. Taking into account the result (A11) the factorization method reviewed in Ref. [30] could be applied, because \([{\hat{C}},{\hat{D}}]\ne 0\). For this purpose, the following functions are defined

$$\begin{aligned} {\hat{F}}(\xi )= & {} e^{\xi ({\hat{C}}+{\hat{D}})}, \end{aligned}$$
(A12)
$$\begin{aligned} {\hat{F}}(\xi )= & {} e^{f_0(\xi ){\hat{k}}^2}e^{f_1(\xi )[{\hat{C}},{\hat{D}}]}e^{f_2(\xi ){\hat{D}}}e^{f_3(\xi ){\hat{C}}}. \end{aligned}$$
(A13)

The first expression is an auxiliary function, while the second one corresponds to the proposed factorization. These definitions belong to the first step of the method.

The second step consists in differentiating (A12) and (A13) with respect to the parameter \(\xi \) to obtain

$$\begin{aligned} \frac{\mathrm{d} }{\mathrm{d} \xi } F(\xi )=({\hat{C}}+{\hat{D}})e^{\xi ({\hat{C}}+{\hat{D}})}=({\hat{C}}+{\hat{D}})F(\xi ), \end{aligned}$$
(A14)

and on the other hand

$$\begin{aligned} \frac{\mathrm{d} }{\mathrm{d} \xi } F(\xi )= & {} \frac{\mathrm{d} f_0(\xi )}{\mathrm{d} \xi } {\hat{k}}^2 e^{f_0(\xi ){\hat{k}}^2}e^{f_1(\xi )[{\hat{C}},{\hat{D}}]}e^{f_2(\xi ){\hat{D}}}e^{f_3(\xi ){\hat{C}}}\nonumber \\&+\, \frac{\mathrm{d} f_1(\xi )}{\mathrm{d} \xi } e^{f_0(\xi ){\hat{k}}^2}[{\hat{C}},{\hat{D}}]e^{f_1(\xi )[{\hat{C}},{\hat{D}}]}e^{f_2(\xi ){\hat{D}}}e^{f_3(\xi ){\hat{C}}}\nonumber \\&+\,\frac{\mathrm{d} f_2(\xi )}{\mathrm{d} \xi } e^{f_0(\xi ){\hat{k}}^2}e^{f_1(\xi )[{\hat{C}},{\hat{D}}]}{\hat{D}}e^{f_2(\xi ){\hat{D}}}e^{f_3(\xi ){\hat{C}}}\nonumber \\&\, + \frac{\mathrm{d} f_3(\xi )}{\mathrm{d} \xi } e^{f_0(\xi ){\hat{k}}^2}e^{f_1(\xi )[{\hat{C}},{\hat{D}}]}e^{f_2(\xi ){\hat{D}}}{\hat{C}} e^{f_3(\xi ){\hat{C}}}. \end{aligned}$$
(A15)

It is necessary to move to the right the function \(F(\xi )\), like in Eq. (A14). In order to make this arrangement, the next relations must be used (see [46])

$$\begin{aligned}&e^{\xi {\hat{A}}}{\hat{B}}=(e^{\xi {\hat{A}}}{\hat{B}}e^{-\xi {\hat{A}}})e^{\xi {\hat{A}}}, \end{aligned}$$
(A16)
$$\begin{aligned}&e^{\gamma {\hat{A}}}{\hat{B}}e^{-\gamma {\hat{A}}}={\hat{B}}+\gamma [{\hat{A}},{\hat{B}}]+\frac{\gamma ^2}{2!}[{\hat{A}},[{\hat{A}},{\hat{B}}]]+\cdots . \end{aligned}$$
(A17)

After some algebra and with the help of the commutations relations

$$\begin{aligned} {[}{\hat{C}},{\hat{E}}]= & {} \hbar ^2\omega _m^2{\hat{D}}, \end{aligned}$$
(A18)
$$\begin{aligned} {[}{\hat{D}},{\hat{E}}]= & {} 2\hbar \omega _m{\hat{k}}^2, \end{aligned}$$
(A19)

Eq. (A15) becomes

$$\begin{aligned} \frac{\mathrm{d} }{\mathrm{d} \xi } F(\xi )= & {} \Bigg \{ \frac{\mathrm{d} f_3(\xi ) }{\mathrm{d} \xi }{\hat{C}}+\bigg (\frac{\mathrm{d} f_2(\xi ) }{\mathrm{d} \xi }-\hbar ^2\omega ^2_m f_1(\xi )\frac{\mathrm{d} f_3(\xi ) }{\mathrm{d} \xi }\bigg ){\hat{D}}\nonumber \\&\Bigg (\frac{\mathrm{d} f_1(\xi ) }{\mathrm{d} \xi }-f_2(\xi )\frac{\mathrm{d} f_3(\xi ) }{\mathrm{d} \xi }\Bigg ){\hat{E}} \nonumber \\&\Bigg (\frac{\mathrm{d} f_0(\xi )}{\mathrm{d} \xi }-2\hbar \omega _mf_1(\xi )\frac{\mathrm{d} f_2(\xi )}{\mathrm{d} \xi } +\hbar ^2\omega ^3_m f_1^2(\xi )\nonumber \\&-\hbar \omega _m f_2^2(\xi )\frac{\mathrm{d} f_3(\xi ) }{\mathrm{d} \xi }\Bigg ){\hat{k}}^2\Bigg \}F(\xi ). \end{aligned}$$
(A20)

The third step consists in comparing the coefficients of (A14) and (A20); from this comparison, the following system of differential equations is obtained

$$\begin{aligned}&\frac{\mathrm{d} f_3(\xi ) }{\mathrm{d} \xi }=1,\nonumber \\&\frac{\mathrm{d} f_2(\xi ) }{\mathrm{d} \xi }-\hbar ^2\omega ^2_m f_1(\xi )\frac{\mathrm{d} f_3(\xi ) }{\mathrm{d} \xi } = 1, \nonumber \\&\frac{\mathrm{d} f_1(\xi ) }{\mathrm{d} \xi }-f_2(\xi )\frac{\mathrm{d} f_3(\xi ) }{\mathrm{d} \xi } = 0,\nonumber \\&\frac{\mathrm{d} f_0(\xi )}{\mathrm{d} \xi }-2\hbar \omega _mf_1(\xi )\frac{\mathrm{d} f_2(\xi )}{\mathrm{d} \xi } +\hbar ^2\omega ^3_m f_1^2(\xi )-\hbar \omega _m f_2^2(\xi )\frac{\mathrm{d} f_3(\xi ) }{\mathrm{d} \xi }=0. \end{aligned}$$
(A21)

The initial condition is \(F(0)=1\), which implies \(f_0(0)=f_1(0)=f_2(0)=f_3(0)=0\) and gives the following solutions:

$$\begin{aligned} f_0(\xi )= & {} \frac{\sinh (\hbar \omega _m\xi )\cosh (\hbar \omega _m\xi )-\hbar \omega _m \xi }{\hbar ^2\omega _m^2}, \end{aligned}$$
(A22)
$$\begin{aligned} f_1(\xi )= & {} \frac{\cosh (\hbar \omega _m\xi )-1}{\hbar ^2\omega _m^2}, \end{aligned}$$
(A23)
$$\begin{aligned} f_2(\xi )= & {} \frac{\sinh (\hbar \omega _m\xi )}{\hbar \omega _m}, \end{aligned}$$
(A24)
$$\begin{aligned} f_3(\xi )= & {} \xi . \end{aligned}$$
(A25)

Accordingly, the operator \({\hat{U}}(t)\) is expressed as:

$$\begin{aligned} {\hat{U}}(t)=e^{\xi {\hat{A}}}e^{\xi {\hat{B}}}e^{f_0(\xi ){\hat{k}}^2}e^{f_1(\xi )[{\hat{C}},{\hat{D}}]}e^{f_2(\xi ){\hat{D}}}e^{f_3(\xi ){\hat{C}}}. \end{aligned}$$
(A26)

Since the time evolution operator expressed in (A26) will be applied to the initial state, it is necessary to have a more practical expression; to do this, the factors \(e^{f_1(\xi )[{\hat{C}},{\hat{D}}]}\) and \(e^{f_2(\xi ){\hat{D}}}\) are conveniently factorized by using again this method. After performing the corresponding algebra, the final expression for \({\hat{U}}(t)\) is given by

$$\begin{aligned} {\hat{U}}(t)=e^{\xi {\hat{A}}}e^{\xi {\hat{B}}}e^{F_1{\hat{k}}^{2}} e^{F_2{\hat{k}}{\hat{b}}^{\dagger }}e^{F_3{\hat{k}}{\hat{b}}}e^{\xi {\hat{C}}}, \end{aligned}$$
(A27)

where \({\hat{k}}\) is previously defined as \({\hat{k}}=k_1{\hat{A}}+k_2{\hat{B}}\) and \(F_1(\xi )\), \(F_2(\xi )\) and \(F_3(\xi )\) are the following functions:

$$\begin{aligned} F_1(\xi )= & {} f_0(\xi )-\frac{1}{2}\big [f_1^2(\xi )\hbar ^2 \omega _m^2\nonumber \\&+\,2\hbar \omega _m f_1f_2-f_2^2(\xi )\big ] , \end{aligned}$$
(A28)
$$\begin{aligned} F_2(\xi )= & {} f_1(\xi )\hbar \omega _m + f_2(\xi ), \end{aligned}$$
(A29)
$$\begin{aligned} F_2(\xi )= & {} -f_1(\xi )\hbar \omega _m + f_2(\xi ). \end{aligned}$$
(A30)

Such functions, after substituting \(\xi =-it/\hbar \) and some algebra, take the following form:

$$\begin{aligned} F_1(t)= & {} \frac{ e^{-i\omega _m t }-i\omega _m t-1}{ \hbar ^2 \omega _m ^2}, \end{aligned}$$
(A31)
$$\begin{aligned} F_2(t)= & {} \frac{e^{-i\omega _m t}-1}{\hbar \omega _m }, \end{aligned}$$
(A32)
$$\begin{aligned} F_3(t)= & {} \frac{1-e^{i\omega _m t}}{\hbar \omega _m }. \end{aligned}$$
(A33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Lima, J., Arévalo Aguilar, L.M. Collapses and revivals of entanglement in phase space in an optomechanical cavity. Eur. Phys. J. Plus 135, 423 (2020). https://doi.org/10.1140/epjp/s13360-020-00401-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00401-z

Navigation